![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Real analysis
The positive response to the publication of Blanton's English translations of Euler's "Introduction to Analysis of the Infinite" confirmed the relevance of this 240 year old work and encouraged Blanton to translate Euler's "Foundations of Differential Calculus" as well. The current book constitutes just the first 9 out of 27 chapters. The remaining chapters will be published at a later time. With this new translation, Euler's thoughts will not only be more accessible but more widely enjoyed by the mathematical community.
This monograph is devoted to the study of Koethe-Bochner function spaces, an active area of research at the intersection of Banach space theory, harmonic analysis, probability, and operator theory. A number of significant results---many scattered throughout the literature---are distilled and presented here, giving readers a comprehensive view of the subject from its origins in functional analysis to its connections to other disciplines. Considerable background material is provided, and the theory of Koethe-Bochner spaces is rigorously developed, with a particular focus on open problems. Extensive historical information, references, and questions for further study are included; instructive examples and many exercises are incorporated throughout. Both expansive and precise, this book's unique approach and systematic organization will appeal to advanced graduate students and researchers in functional analysis, probability, operator theory, and related fields.
The three volumes of A Course in Mathematical Analysis provide a full and detailed account of all those elements of real and complex analysis that an undergraduate mathematics student can expect to encounter in their first two or three years of study. Containing hundreds of exercises, examples and applications, these books will become an invaluable resource for both students and instructors. This first volume focuses on the analysis of real-valued functions of a real variable. Besides developing the basic theory it describes many applications, including a chapter on Fourier series. It also includes a Prologue in which the author introduces the axioms of set theory and uses them to construct the real number system. Volume II goes on to consider metric and topological spaces and functions of several variables. Volume III covers complex analysis and the theory of measure and integration.
This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and useful to graduates and researchers in pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. The first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderon-Zygmund and Littlewood-Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer theory; Carleson's resolution of the Lusin conjecture; Calderon's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.
This is a rigorous introduction to real analysis for undergraduate students, starting from the axioms for a complete ordered field and a little set theory. The book avoids any preconceptions about the real numbers and takes them to be nothing but the elements of a complete ordered field. All of the standard topics are included, as well as a proper treatment of the trigonometric functions, which many authors take for granted. The final chapters of the book provide a gentle, example-based introduction to metric spaces with an application to differential equations on the real line. The author's exposition is concise and to the point, helping students focus on the essentials. Over 200 exercises of varying difficulty are included, many of them adding to the theory in the text. The book is perfect for second-year undergraduates and for more advanced students who need a foundation in real analysis.
"Inequalities based on Sobolev Representations" deals exclusively with very general tight integral inequalities of Chebyshev-Gruss, Ostrowski types and of integral means, all of which depend upon the Sobolev integral representations of functions. Applicationsillustrate inequalities that engage in ordinary and weak partial derivatives of the involved functions. This book also derives important estimates for the averaged Taylor polynomials and remainders of Sobolev integral representations. The results are examined in all directions and through both univariate and multivariate cases. This book is suitable for researchers, graduate students, and seminars in subareas of mathematical analysis, inequalities, partial differential equations and information theory. "
This textbook covers the majority of traditional topics of infinite sequences and series, starting from the very beginning - the definition and elementary properties of sequences of numbers, and ending with advanced results of uniform convergence and power series. The text is aimed at university students specializing in mathematics and natural sciences, and at all the readers interested in infinite sequences and series. It is designed for the reader who has a good working knowledge of calculus. No additional prior knowledge is required. The text is divided into five chapters, which can be grouped into two parts: the first two chapters are concerned with the sequences and series of numbers, while the remaining three chapters are devoted to the sequences and series of functions, including the power series. Within each major topic, the exposition is inductive and starts with rather simple definitions and/or examples, becoming more compressed and sophisticated as the course progresses. Each key notion and result is illustrated with examples explained in detail. Some more complicated topics and results are marked as complements and can be omitted on a first reading. The text includes a large number of problems and exercises, making it suitable for both classroom use and self-study. Many standard exercises are included in each section to develop basic techniques and test the understanding of key concepts. Other problems are more theoretically oriented and illustrate more intricate points of the theory, or provide counterexamples to false propositions which seem to be natural at first glance. Solutions to additional problems proposed at the end of each chapter are provided as an electronic supplement to this book.
The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.
The subject of special functions is often presented as a collection of disparate results, which are rarely organised in a coherent way. This book answers the need for a different approach to the subject. The authors' main goals are to emphasise general unifying principles coherently and to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more, including chapters on discrete orthogonal polynomials and elliptic functions. The authors show how a very large part of the subject traces back to two equations - the hypergeometric equation and the confluent hypergeometric equation - and describe the various ways in which these equations are canonical and special. Providing ready access to theory and formulas, this book serves as an ideal graduate-level textbook as well as a convenient reference.
This book teaches basic methods of partial differential equations and introduces related important ideas associated with the analysis of numerical methods for those partial differential equations. Coverage details such topics as separation of variables, Fourier analysis, maximum principles, and energy estimates. The book introduces numerical methods in parallel to the classical theory and also includes many engaging exercises.
The first modern treatment of orthogonal polynomials from the viewpoint of special functions is now available in paperback. Its encyclopedic coverage includes classical topics such as Jacobi, Hermite, Laguerre, Hahn, Charlier and Meixner polynomials as well as those discovered over the last 50 years, e.g. Askey-Wilson and Al-Salam-Chihara polynomial systems. Multiple orthogonal polynomials are discussed here for the first time in book form. Many modern applications of the subject are dealt with, including birth and death processes, integrable systems, combinatorics, and physical models. A chapter on open research problems and conjectures is designed to stimulate further research on the subject. Thoroughly updated and corrected since its original printing, this book continues to be valued as an authoritative reference not only by mathematicians, but also a wide range of scientists and engineers. Exercises ranging in difficulty are included to help both the graduate student and the newcomer.
Fourier analysis has many scientific applications - in physics,
number theory, combinatorics, signal processing, probability
theory, statistics, option pricing, cryptography, acoustics,
oceanography, optics and diffraction, geometry, and other areas. In
signal processing and related fields, Fourier analysis is typically
thought of as decomposing a signal into its component frequencies
and their amplitudes.
Originally published in 1966, this well-written and still-cited text covers Fourier analysis, a foundation of science and engineering. Many modern textbooks are filled with specialized terms and equations that may be confusing, but this book uses a friendly, conversational tone to clarify the material and engage the reader. The author meticulously develops the topic and uses 161 problems integrated into the text to walk the student down the simplest path to a solution.
Part two of the authors' comprehensive and innovative work on multidimensional real analysis. This book is based on extensive teaching experience at Utrecht University and gives a thorough account of integral analysis in multidimensional Euclidean space. It is an ideal preparation for students who wish to go on to more advanced study. The notation is carefully organized and all proofs are clean, complete and rigorous. The authors have taken care to pay proper attention to all aspects of the theory. In many respects this book presents an original treatment of the subject and it contains many results and exercises that cannot be found elsewhere. The numerous exercises illustrate a variety of applications in mathematics and physics. This combined with the exhaustive and transparent treatment of subject matter make the book ideal as either the text for a course, a source of problems for a seminar or for self study.
Part one of the authors' comprehensive and innovative work on multidimensional real analysis. This book is based on extensive teaching experience at Utrecht University and gives a thorough account of differential analysis in multidimensional Euclidean space. It is an ideal preparation for students who wish to go on to more advanced study. The notation is carefully organized and all proofs are clean, complete and rigorous. The authors have taken care to pay proper attention to all aspects of the theory. In many respects this book presents an original treatment of the subject and it contains many results and exercises that cannot be found elsewhere. The numerous exercises illustrate a variety of applications in mathematics and physics. This combined with the exhaustive and transparent treatment of subject matter make the book ideal as either the text for a course, a source of problems for a seminar or for self study.
This classic textbook, now reissued, offers a clear exposition of modern probability theory and of the interplay between the properties of metric spaces and probability measures. The new edition has been made even more self-contained than before; it now includes a foundation of the real number system and the Stone-Weierstrass theorem on uniform approximation in algebras of functions. Several other sections have been revised and improved, and the comprehensive historical notes have been further amplified. A number of new exercises have been added, together with hints for solution.
This classic textbook, now reissued, offers a clear exposition of modern probability theory and of the interplay between the properties of metric spaces and probability measures. The new edition has been made even more self-contained than before; it now includes a foundation of the real number system and the Stone-Weierstrass theorem on uniform approximation in algebras of functions. Several other sections have been revised and improved, and the comprehensive historical notes have been further amplified. A number of new exercises have been added, together with hints for solution.
When originally published, this text was the first general account of Hausdorff measures, a subject that has important applications in many fields of mathematics. The first of the three chapters contains an introduction to measure theory, paying particular attention to the study of non-sigma-finite measures. The second chapter develops the most general aspects of the theory of Hausdorff measures, and the final chapter gives a general survey of applications of Hausdorff measures followed by detailed accounts of two special applications. This new edition has a foreword by Kenneth Falconer outlining the developments in measure theory since this book first appeared. This book is ideal for graduate mathematicians with no previous knowledge of the subject, but experts in the field will also want a copy for their shelves.
The last fifteen years have seen a flurry of exciting developments in Fourier restriction theory, leading to significant new applications in diverse fields. This timely text brings the reader from the classical results to state-of-the-art advances in multilinear restriction theory, the Bourgain-Guth induction on scales and the polynomial method. Also discussed in the second part are decoupling for curved manifolds and a wide variety of applications in geometric analysis, PDEs (Strichartz estimates on tori, local smoothing for the wave equation) and number theory (exponential sum estimates and the proof of the Main Conjecture for Vinogradov's Mean Value Theorem). More than 100 exercises in the text help reinforce these important but often difficult ideas, making it suitable for graduate students as well as specialists. Written by an author at the forefront of the modern theory, this book will be of interest to everybody working in harmonic analysis.
Real Analysis and Infinity presents the essential topics for a first course in real analysis with an emphasis on the role of infinity in all of the fundamental concepts. After introducing sequences of numbers, it develops the set of real numbers in terms of Cauchy sequences of rational numbers, and uses this development to derive the important properties of real numbers like completeness. The book then develops the concepts of continuity, derivative, and integral, and presents the theory of infinite sequences and series of functions. Topics discussed are wide-ranging and include the convergence of sequences, definition of limits and continuity via converging sequences, and the development of derivative. The proofs of the vast majority of theorems are presented and pedagogical considerations are given priority to help cement the reader's knowledge. Preliminary discussion of each major topic is supplemented with examples and diagrams, and historical asides. Examples follow most major results to improve comprehension, and exercises at the end of each chapter help with the refinement of proof and calculation skills.
Closer And Closer Is The Ideal First Introduction To Real Analysis For Upper-Level Undergraduate Math Majors. The Text Is Divided Into Two Main Parts; The Core Material Of The Subject Is Covered In Chapters 1-12, And A Series Of Cases, Examples, Applications, And Projects, Collectively Called Excursions Form The Second Half Of The Book. These Excursions Are Designed To Bring The Concepts Of Real Analysis To Light And To Allow Students To Work Through Numerous Interesting Problems With Ease.
Engineers and physicists are more and more encountering integrations involving nonelementary integrals and higher transcendental functions. Such integrations frequently involve (not always in immediately re cognizable form) elliptic functions and elliptic integrals. The numerous books written on elliptic integrals, while of great value to the student or mathematician, are not especially suitable for the scientist whose primary objective is the ready evaluation of the integrals that occur in his practical problems. As a result, he may entirely avoid problems which lead to elliptic integrals, or is likely to resort to graphical methods or other means of approximation in dealing with all but the simplest of these integrals. It became apparent in the course of my work in theoretical aero dynamics that there was a need for a handbook embodying in convenient form a comprehensive table of elliptic integrals together with auxiliary formulas and numerical tables of values. Feeling that such a book would save the engineer and physicist much valuable time, I prepared the present volume."
An accessible introduction to real analysis and its connection to elementary calculus Bridging the gap between the development and history of real analysis, "Introduction to Real Analysis: An Educational Approach" presents a comprehensive introduction to real analysis while also offering a survey of the field. With its balance of historical background, key calculus methods, and hands-on applications, this book provides readers with a solid foundation and fundamental understanding of real analysis. The book begins with an outline of basic calculus, including a close examination of problems illustrating links and potential difficulties. Next, a fluid introduction to real analysis is presented, guiding readers through the basic topology of real numbers, limits, integration, and a series of functions in natural progression. The book moves on to analysis with more rigorous investigations, and the topology of the line is presented along with a discussion of limits and continuity that includes unusual examples in order to direct readers' thinking beyond intuitive reasoning and on to more complex understanding. The dichotomy of pointwise and uniform convergence is then addressed and is followed by differentiation and integration. Riemann-Stieltjes integrals and the Lebesgue measure are also introduced to broaden the presented perspective. The book concludes with a collection of advanced topics that are connected to elementary calculus, such as modeling with logistic functions, numerical quadrature, Fourier series, and special functions. Detailed appendices outline key definitions and theorems in elementary calculus and also present additional proofs, projects, and sets in real analysis. Each chapter references historical sources on real analysis while also providing proof-oriented exercises and examples that facilitate the development of computational skills. In addition, an extensive bibliography provides additional resources on the topic. "Introduction to Real Analysis: An Educational Approach" is an ideal book for upper- undergraduate and graduate-level real analysis courses in the areas of mathematics and education. It is also a valuable reference for educators in the field of applied mathematics.
Part 1 begins with an overview of properties of the real numbers and starts to introduce the notions of set theory. The absolute value and in particular inequalities are considered in great detail before functions and their basic properties are handled. From this the authors move to differential and integral calculus. Many examples are discussed. Proofs not depending on a deeper understanding of the completeness of the real numbers are provided. As a typical calculus module, this part is thought as an interface from school to university analysis.Part 2 returns to the structure of the real numbers, most of all to the problem of their completeness which is discussed in great depth. Once the completeness of the real line is settled the authors revisit the main results of Part 1 and provide complete proofs. Moreover they develop differential and integral calculus on a rigorous basis much further by discussing uniform convergence and the interchanging of limits, infinite series (including Taylor series) and infinite products, improper integrals and the gamma function. In addition they discussed in more detail as usual monotone and convex functions.Finally, the authors supply a number of Appendices, among them Appendices on basic mathematical logic, more on set theory, the Peano axioms and mathematical induction, and on further discussions of the completeness of the real numbers. Remarkably, Volume I contains ca. 360 problems with complete, detailed solutions.
This user-friendly textbook introduces complex analysis at the beginning graduate or advanced undergraduate level. Unlike other textbooks, it follows Weierstrass' approach, stressing the importance of power series expansions instead of starting with the Cauchy integral formula, an approach that illuminates many important concepts. This view allows readers to quickly obtain and understand many fundamental results of complex analysis, such as the maximum principle, Liouville's theorem, and Schwarz's lemma. The book covers all the essential material on complex analysis, and includes several elegant proofs that were recently discovered. It includes the zipper algorithm for computing conformal maps, as well as a constructive proof of the Riemann mapping theorem, and culminates in a complete proof of the uniformization theorem. Aimed at students with some undergraduate background in real analysis, though not Lebesgue integration, this classroom-tested textbook will teach the skills and intuition necessary to understand this important area of mathematics. |
![]() ![]() You may like...
Theory of Translation Closedness for…
Chao Wang, Ravi P. Agarwal, …
Hardcover
R3,728
Discovery Miles 37 280
Advanced Calculus - A Transition to…
Thomas P. Dence, Joseph B. Dence
Hardcover
R2,242
Discovery Miles 22 420
Fixed Point Theory in Metric Type Spaces
Ravi P. Agarwal, Erdal Karapinar, …
Hardcover
R4,076
Discovery Miles 40 760
Nonlinear Differential Problems with…
Dumitru Motreanu
Paperback
Operator Theory and Harmonic Analysis…
Alexey N. Karapetyants, Vladislav V. Kravchenko, …
Hardcover
R6,433
Discovery Miles 64 330
Operator Theory And Analysis Of Infinite…
Palle Jorgensen, Erin P. J. Pearse
Hardcover
R3,827
Discovery Miles 38 270
Real Analysis with an Introduction to…
Don Hong, Jian zhong Wang, …
Hardcover
|