Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Real analysis
These lecture notes provide a self-contained introduction to regularity theory for elliptic equations and systems in divergence form. After a short review of some classical results on everywhere regularity for scalar-valued weak solutions, the presentation focuses on vector-valued weak solutions to a system of several coupled equations. In the vectorial case, weak solutions may have discontinuities and so are expected, in general, to be regular only outside of a set of measure zero. Several methods are presented concerning the proof of such partial regularity results, and optimal regularity is discussed. Finally, a short overview is given on the current state of the art concerning the size of the singular set on which discontinuities may occur. The notes are intended for graduate and postgraduate students with a solid background in functional analysis and some familiarity with partial differential equations; they will also be of interest to researchers working on related topics.
This undergraduate textbook is based on lectures given by the author on the differential and integral calculus of functions of several real variables. The book has a modern approach and includes topics such as: *The p-norms on vector space and their equivalence *The Weierstrass and Stone-Weierstrass approximation theorems *The differential as a linear functional; Jacobians, Hessians, and Taylor's theorem in several variables *The Implicit Function Theorem for a system of equations, proved via Banach's Fixed Point Theorem *Applications to Ordinary Differential Equations *Line integrals and an introduction to surface integrals This book features numerous examples, detailed proofs, as well as exercises at the end of sections. Many of the exercises have detailed solutions, making the book suitable for self-study. Several Real Variables will be useful for undergraduate students in mathematics who have completed first courses in linear algebra and analysis of one real variable.
Fractional evolution inclusions are an important form of differential inclusions within nonlinear mathematical analysis. They are generalizations of the much more widely developed fractional evolution equations (such as time-fractional diffusion equations) seen through the lens of multivariate analysis. Compared to fractional evolution equations, research on the theory of fractional differential inclusions is however only in its initial stage of development. This is important because differential models with the fractional derivative providing an excellent instrument for the description of memory and hereditary properties, and have recently been proved valuable tools in the modeling of many physical phenomena. The fractional order models of real systems are always more adequate than the classical integer order models, since the description of some systems is more accurate when the fractional derivative is used. The advantages of fractional derivatization become evident in modeling mechanical and electrical properties of real materials, description of rheological properties of rocks and in various other fields. Such models are interesting for engineers and physicists as well as so-called pure mathematicians. Phenomena investigated in hybrid systems with dry friction, processes of controlled heat transfer, obstacle problems and others can be described with the help of various differential inclusions, both linear and nonlinear. Fractional Evolution Equations and Inclusions is devoted to a rapidly developing area of the research for fractional evolution equations & inclusions and their applications to control theory. It studies Cauchy problems for fractional evolution equations, and fractional evolution inclusions with Hille-Yosida operators. It discusses control problems for systems governed by fractional evolution equations. Finally it provides an investigation of fractional stochastic evolution inclusions in Hilbert spaces.
This brief explores the Krasnosel'skii-Man (KM) iterative method, which has been extensively employed to find fixed points of nonlinear methods.
Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas). The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integration, differential equations). A final chapter shows how these theorems can be used to construct the compact Riemann surface of an algebraic function, a subject that is rarely addressed in the general literature though it only requires elementary techniques. Besides the Lebesgue integral, Volume IV will set out a piece of specialized mathematics towards which the entire content of the previous volumes will converge: Jacobi, Riemann, Dedekind series and infinite products, elliptic functions, classical theory of modular functions and its modern version using the structure of the Lie algebra of SL(2,R).
This text is a rigorous, detailed introduction to real analysis that presents the fundamentals with clear exposition and carefully written definitions, theorems, and proofs. It is organized in a distinctive, flexible way that would make it equally appropriate to undergraduate mathematics majors who want to continue in mathematics, and to future mathematics teachers who want to understand the theory behind calculus. The Real Numbers and Real Analysis will serve as an excellent one-semester text for undergraduates majoring in mathematics, and for students in mathematics education who want a thorough understanding of the theory behind the real number system and calculus.
The positive response to the publication of Blanton's English translations of Euler's "Introduction to Analysis of the Infinite" confirmed the relevance of this 240 year old work and encouraged Blanton to translate Euler's "Foundations of Differential Calculus" as well. The current book constitutes just the first 9 out of 27 chapters. The remaining chapters will be published at a later time. With this new translation, Euler's thoughts will not only be more accessible but more widely enjoyed by the mathematical community.
This monograph is devoted to the study of Koethe-Bochner function spaces, an active area of research at the intersection of Banach space theory, harmonic analysis, probability, and operator theory. A number of significant results---many scattered throughout the literature---are distilled and presented here, giving readers a comprehensive view of the subject from its origins in functional analysis to its connections to other disciplines. Considerable background material is provided, and the theory of Koethe-Bochner spaces is rigorously developed, with a particular focus on open problems. Extensive historical information, references, and questions for further study are included; instructive examples and many exercises are incorporated throughout. Both expansive and precise, this book's unique approach and systematic organization will appeal to advanced graduate students and researchers in functional analysis, probability, operator theory, and related fields.
This up-to-date introduction to Griffiths' theory of period maps and period domains focusses on algebraic, group-theoretic and differential geometric aspects. Starting with an explanation of Griffiths' basic theory, the authors go on to introduce spectral sequences and Koszul complexes that are used to derive results about cycles on higher-dimensional algebraic varieties such as the Noether-Lefschetz theorem and Nori's theorem. They explain differential geometric methods, leading up to proofs of Arakelov-type theorems, the theorem of the fixed part and the rigidity theorem. They also use Higgs bundles and harmonic maps to prove the striking result that not all compact quotients of period domains are Kahler. This thoroughly revised second edition includes a new third part covering important recent developments, in which the group-theoretic approach to Hodge structures is explained, leading to Mumford-Tate groups and their associated domains, the Mumford-Tate varieties and generalizations of Shimura varieties.
"Inequalities based on Sobolev Representations" deals exclusively with very general tight integral inequalities of Chebyshev-Gruss, Ostrowski types and of integral means, all of which depend upon the Sobolev integral representations of functions. Applicationsillustrate inequalities that engage in ordinary and weak partial derivatives of the involved functions. This book also derives important estimates for the averaged Taylor polynomials and remainders of Sobolev integral representations. The results are examined in all directions and through both univariate and multivariate cases. This book is suitable for researchers, graduate students, and seminars in subareas of mathematical analysis, inequalities, partial differential equations and information theory. "
The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.
This book teaches basic methods of partial differential equations and introduces related important ideas associated with the analysis of numerical methods for those partial differential equations. Coverage details such topics as separation of variables, Fourier analysis, maximum principles, and energy estimates. The book introduces numerical methods in parallel to the classical theory and also includes many engaging exercises.
Fourier analysis has many scientific applications - in physics,
number theory, combinatorics, signal processing, probability
theory, statistics, option pricing, cryptography, acoustics,
oceanography, optics and diffraction, geometry, and other areas. In
signal processing and related fields, Fourier analysis is typically
thought of as decomposing a signal into its component frequencies
and their amplitudes.
Lively prose and imaginative exercises draw the reader into this unique introductory real analysis textbook. Motivating the fundamental ideas and theorems that underpin real analysis with historical remarks and well-chosen quotes, the author shares his enthusiasm for the subject throughout. A student reading this book is invited not only to acquire proficiency in the fundamentals of analysis, but to develop an appreciation for abstraction and the language of its expression. In studying this book, students will encounter: the interconnections between set theory and mathematical statements and proofs; the fundamental axioms of the natural, integer, and real numbers; rigorous -N and - definitions; convergence and properties of an infinite series, product, or continued fraction; series, product, and continued fraction formulae for the various elementary functions and constants. Instructors will appreciate this engaging perspective, showcasing the beauty of these fundamental results.
With the success of its previous editions, "Principles of Real Analysis, Third Edition," continues to introduce students to the fundamentals of the theory of measure and functional analysis. In this thorough update, the authors have included a new chapter on Hilbert spaces as well as integrating over 150 new exercises throughout. The new edition covers the basic theory of integration in a clear, well-organized manner, using an imaginative and highly practical synthesis of the "Daniell Method" and the measure theoretic approach. Students will be challenged by the more than 600 exercises contained in the book. Topics are illustrated by many varied examples, and they provide clear connections between real analysis and functional analysis. * Gives a unique presentation of integration theory
An accessible introduction to real analysis and its connection to elementary calculus Bridging the gap between the development and history of real analysis, "Introduction to Real Analysis: An Educational Approach" presents a comprehensive introduction to real analysis while also offering a survey of the field. With its balance of historical background, key calculus methods, and hands-on applications, this book provides readers with a solid foundation and fundamental understanding of real analysis. The book begins with an outline of basic calculus, including a close examination of problems illustrating links and potential difficulties. Next, a fluid introduction to real analysis is presented, guiding readers through the basic topology of real numbers, limits, integration, and a series of functions in natural progression. The book moves on to analysis with more rigorous investigations, and the topology of the line is presented along with a discussion of limits and continuity that includes unusual examples in order to direct readers' thinking beyond intuitive reasoning and on to more complex understanding. The dichotomy of pointwise and uniform convergence is then addressed and is followed by differentiation and integration. Riemann-Stieltjes integrals and the Lebesgue measure are also introduced to broaden the presented perspective. The book concludes with a collection of advanced topics that are connected to elementary calculus, such as modeling with logistic functions, numerical quadrature, Fourier series, and special functions. Detailed appendices outline key definitions and theorems in elementary calculus and also present additional proofs, projects, and sets in real analysis. Each chapter references historical sources on real analysis while also providing proof-oriented exercises and examples that facilitate the development of computational skills. In addition, an extensive bibliography provides additional resources on the topic. "Introduction to Real Analysis: An Educational Approach" is an ideal book for upper- undergraduate and graduate-level real analysis courses in the areas of mathematics and education. It is also a valuable reference for educators in the field of applied mathematics.
Engineers and physicists are more and more encountering integrations involving nonelementary integrals and higher transcendental functions. Such integrations frequently involve (not always in immediately re cognizable form) elliptic functions and elliptic integrals. The numerous books written on elliptic integrals, while of great value to the student or mathematician, are not especially suitable for the scientist whose primary objective is the ready evaluation of the integrals that occur in his practical problems. As a result, he may entirely avoid problems which lead to elliptic integrals, or is likely to resort to graphical methods or other means of approximation in dealing with all but the simplest of these integrals. It became apparent in the course of my work in theoretical aero dynamics that there was a need for a handbook embodying in convenient form a comprehensive table of elliptic integrals together with auxiliary formulas and numerical tables of values. Feeling that such a book would save the engineer and physicist much valuable time, I prepared the present volume."
Comprehensive, elementary introduction to real and functional analysis. Self-contained, readily accessible to those with background in advanced calculus. Cover basic concepts and introductory principles in set theory, metric spaces, topological and linear spaces, linear functionals and linear operators, much more. 350 problems.
This unusual and lively textbook offers a clear and intuitive approach to the classical and beautiful theory of complex variables. With very little dependence on advanced concepts from several-variable calculus and topology, the text focuses on the authentic complex-variable ideas and techniques. Accessible to students at their early stages of mathematical study, this full first year course in complex analysis offers new and interesting motivations for classical results and introduces related topics stressing motivation and technique. Numerous illustrations, examples, and now 300 exercises, enrich the text. Students who master this textbook will emerge with an excellent grounding in complex analysis, and a solid understanding of its wide applicability.
Part 1 begins with an overview of properties of the real numbers and starts to introduce the notions of set theory. The absolute value and in particular inequalities are considered in great detail before functions and their basic properties are handled. From this the authors move to differential and integral calculus. Many examples are discussed. Proofs not depending on a deeper understanding of the completeness of the real numbers are provided. As a typical calculus module, this part is thought as an interface from school to university analysis.Part 2 returns to the structure of the real numbers, most of all to the problem of their completeness which is discussed in great depth. Once the completeness of the real line is settled the authors revisit the main results of Part 1 and provide complete proofs. Moreover they develop differential and integral calculus on a rigorous basis much further by discussing uniform convergence and the interchanging of limits, infinite series (including Taylor series) and infinite products, improper integrals and the gamma function. In addition they discussed in more detail as usual monotone and convex functions.Finally, the authors supply a number of Appendices, among them Appendices on basic mathematical logic, more on set theory, the Peano axioms and mathematical induction, and on further discussions of the completeness of the real numbers. Remarkably, Volume I contains ca. 360 problems with complete, detailed solutions.
Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Containing basic theory and a wealth of new views and results, it will become an essential resource for graduate students and researchers. Although Mumford-Tate groups can be defined for general structures, their theory and use to date has mainly been in the classical case of abelian varieties. While the book does examine this area, it focuses on the nonclassical case. The general theory turns out to be very rich, such as in the unexpected connections of finite dimensional and infinite dimensional representation theory of real, semisimple Lie groups. The authors give the complete classification of Hodge representations, a topic that should become a standard in the finite-dimensional representation theory of noncompact, real, semisimple Lie groups. They also indicate that in the future, a connection seems ready to be made between Lie groups that admit discrete series representations and the study of automorphic cohomology on quotients of Mumford-Tate domains by arithmetic groups. Bringing together complex geometry, representation theory, and arithmetic, this book opens up a fresh perspective on an important subject.
Real Analysis is indispensable for in-depth understanding and effective application of methods of modern analysis. This concise and friendly book is written for early graduate students of mathematics or of related disciplines hoping to learn the basics of Real Analysis with reasonable ease. The essential role of Real Analysis in the construction of basic function spaces necessary for the application of Functional Analysis in many fields of scientific disciplines is demonstrated with due explanations and illuminating examples. After the introductory chapter, a compact but precise treatment of general measure and integration is taken up so that readers have an overall view of the simple structure of the general theory before delving into special measures. The universality of the method of outer measure in the construction of measures is emphasized because it provides a unified way of looking for useful regularity properties of measures. The chapter on functions of real variables sits at the core of the book; it treats in detail properties of functions that are not only basic for understanding the general feature of functions but also relevant for the study of those function spaces which are important when application of functional analytical methods is in question. This is then followed naturally by an introductory chapter on basic principles of Functional Analysis which reveals, together with the last two chapters on the space of p-integrable functions and Fourier integral, the intimate interplay between Functional Analysis and Real Analysis. Applications of many of the topics discussed are included to motivate the readers for further related studies; these contain explorations towards probability theory and partial differential equations.
This book explains the notion of Brakke's mean curvature flow and its existence and regularity theories without assuming familiarity with geometric measure theory. The focus of study is a time-parameterized family of k-dimensional surfaces in the n-dimensional Euclidean space (1 k < n). The family is the mean curvature flow if the velocity of motion of surfaces is given by the mean curvature at each point and time. It is one of the simplest and most important geometric evolution problems with a strong connection to minimal surface theory. In fact, equilibrium of mean curvature flow corresponds precisely to minimal surface. Brakke's mean curvature flow was first introduced in 1978 as a mathematical model describing the motion of grain boundaries in an annealing pure metal. The grain boundaries move by the mean curvature flow while retaining singularities such as triple junction points. By using a notion of generalized surface called a varifold from geometric measure theory which allows the presence of singularities, Brakke successfully gave it a definition and presented its existence and regularity theories. Recently, the author provided a complete proof of Brakke's existence and regularity theorems, which form the content of the latter half of the book. The regularity theorem is also a natural generalization of Allard's regularity theorem, which is a fundamental regularity result for minimal surfaces and for surfaces with bounded mean curvature. By carefully presenting a minimal amount of mathematical tools, often only with intuitive explanation, this book serves as a good starting point for the study of this fascinating object as well as a comprehensive introduction to other important notions from geometric measure theory.
A quantity can be made smaller and smaller without it ever vanishing. This fact has profound consequences for science, technology, and even the way we think about numbers. In this book, we will explore this idea by moving at an easy pace through an account of elementary real analysis and, in particular, will focus on numbers, sequences, and series. Almost all textbooks on introductory analysis assume some background in calculus. This book doesn't and, instead, the emphasis is on the application of analysis to number theory. The book is split into two parts. Part 1 follows a standard university course on analysis and each chapter closes with a set of exercises. Here, numbers, inequalities, convergence of sequences, and infinite series are all covered. Part 2 contains a selection of more unusual topics that aren't usually found in books of this type. It includes proofs of the irrationality of e and , continued fractions, an introduction to the Riemann zeta function, Cantor's theory of the infinite, and Dedekind cuts. There is also a survey of what analysis can do for the calculus and a brief history of the subject. A lot of material found in a standard university course on "real analysis" is covered and most of the mathematics is written in standard theorem-proof style. However, more details are given than is usually the case to help readers who find this style daunting. Both set theory and proof by induction are avoided in the interests of making the book accessible to a wider readership, but both of these topics are the subjects of appendices for those who are interested in them. And unlike most university texts at this level, topics that have featured in popular science books, such as the Riemann hypothesis, are introduced here. As a result, this book occupies a unique position between a popular mathematics book and a first year college or university text, and offers a relaxed introduction to a fascinating and important branch of mathematics.
Das Lehrbuch vermittelt solides Basiswissen zu den thematischen Schwerpunkten Produktmasse, Fourier-Transformation, Transformationsformel, Konvergenzbegriffe, absolute Stetigkeit und Masse auf topologischen Raumen. Hoehepunkte sind die Herleitung des Riesz'schen Darstellungssatzes und der Beweis der Existenz und Eindeutigkeit des Haar'schen Masses. Der Band enthalt ferner mathematikhistorische Ausfluge und Kurzportrats von Mathematikern, die zum Thema des Buchs wichtige Beitrage geliefert haben, sowie zahlreiche UEbungsaufgaben zur Vertiefung des Stoffs. |
You may like...
Operator Theory and Harmonic Analysis…
Alexey N. Karapetyants, Igor V. Pavlov, …
Hardcover
R5,497
Discovery Miles 54 970
Theory of Translation Closedness for…
Chao Wang, Ravi P. Agarwal, …
Hardcover
R3,626
Discovery Miles 36 260
Operator Theory and Harmonic Analysis…
Alexey N. Karapetyants, Vladislav V. Kravchenko, …
Hardcover
R6,266
Discovery Miles 62 660
Advances in Non-Archimedean Analysis and…
W. A. Zuniga-Galindo, Bourama Toni
Hardcover
R3,311
Discovery Miles 33 110
Operator Theory And Analysis Of Infinite…
Palle Jorgensen, Erin P. J. Pearse
Hardcover
R3,720
Discovery Miles 37 200
Pillars of Transcendental Number Theory
Saradha Natarajan, Ravindranathan Thangadurai
Hardcover
R2,497
Discovery Miles 24 970
|