![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Real analysis
Real analysis provides the fundamental underpinnings for calculus, arguably the most useful and influential mathematical idea ever invented. It is a core subject in any mathematics degree, and also one which many students find challenging. A Sequential Introduction to Real Analysis gives a fresh take on real analysis by formulating all the underlying concepts in terms of convergence of sequences. The result is a coherent, mathematically rigorous, but conceptually simple development of the standard theory of differential and integral calculus ideally suited to undergraduate students learning real analysis for the first time.This book can be used as the basis of an undergraduate real analysis course, or used as further reading material to give an alternative perspective within a conventional real analysis course.
While most texts on real analysis are content to assume the real numbers, or to treat them only briefly, this text makes a serious study of the real number system and the issues it brings to light. Analysis needs the real numbers to model the line, and to support the concepts of continuity and measure. But these seemingly simple requirements lead to deep issues of set theory-uncountability, the axiom of choice, and large cardinals. In fact, virtually all the concepts of infinite set theory are needed for a proper understanding of the real numbers, and hence of analysis itself. By focusing on the set-theoretic aspects of analysis, this text makes the best of two worlds: it combines a down-to-earth introduction to set theory with an exposition of the essence of analysis-the study of infinite processes on the real numbers. It is intended for senior undergraduates, but it will also be attractive to graduate students and professional mathematicians who, until now, have been content to "assume" the real numbers. Its prerequisites are calculus and basic mathematics. Mathematical history is woven into the text, explaining how the concepts of real number and infinity developed to meet the needs of analysis from ancient times to the late twentieth century. This rich presentation of history, along with a background of proofs, examples, exercises, and explanatory remarks, will help motivate the reader. The material covered includes classic topics from both set theory and real analysis courses, such as countable and uncountable sets, countable ordinals, the continuum problem, the Cantor-Schroeder-Bernstein theorem, continuous functions, uniform convergence, Zorn's lemma, Borel sets, Baire functions, Lebesgue measure, and Riemann integrable functions.
This classroom-tested text is intended for a one-semester course in Lebesgue's theory. With over 180 exercises, the text takes an elementary approach, making it easily accessible to both upper-undergraduate- and lower-graduate-level students. The three main topics presented are measure, integration, and differentiation, and the only prerequisite is a course in elementary real analysis. In order to keep the book self-contained, an introductory chapter is included with the intent to fill the gap between what the student may have learned before and what is required to fully understand the consequent text. Proofs of difficult results, such as the differentiability property of functions of bounded variations, are dissected into small steps in order to be accessible to students. With the exception of a few simple statements, all results are proven in the text. The presentation is elementary, where -algebras are not used in the text on measure theory and Dini's derivatives are not used in the chapter on differentiation. However, all the main results of Lebesgue's theory are found in the book. http://online.sfsu.edu/sergei/MID.htm
Optimal control theory has numerous applications in both science and engineering. This book presents basic concepts and principles of mathematical programming in terms of set-valued analysis and develops a comprehensive optimality theory of problems described by ordinary and partial differential inclusions.
Elementary Real Analysis is a core course in nearly all mathematics departments throughout the world. It enables students to develop a deep understanding of the key concepts of calculus from a mature perspective. Elements of Real Analysis is a student-friendly guide to learning all the important ideas of elementary real analysis, based on the author's many years of experience teaching the subject to typical undergraduate mathematics majors. It avoids the compact style of professional mathematics writing, in favor of a style that feels more comfortable to students encountering the subject for the first time. It presents topics in ways that are most easily understood, yet does not sacrifice rigor or coverage. In using this book, students discover that real analysis is completely deducible from the axioms of the real number system. They learn the powerful techniques of limits of sequences as the primary entry to the concepts of analysis, and see the ubiquitous role sequences play in virtually all later topics. They become comfortable with topological ideas, and see how these concepts help unify the subject. Students encounter many interesting examples, including "pathological" ones, that motivate the subject and help fix the concepts. They develop a unified understanding of limits, continuity, differentiability, Riemann integrability, and infinite series of numbers and functions.
Ideal For The One-Semester Undergraduate Course, Basic Real Analysis Is Intended For Students Who Have Recently Completed A Traditional Calculus Course And Proves The Basic Theorems Of Single Variable Calculus In A Simple And Accessible Manner. It Gradually Builds Upon Key Material As To Not Overwhelm Students Beginning The Course And Becomes More Rigorous As They Progresses. Optional Appendices On Sets And Functions, Countable And Uncountable Sets, And Point Set Topology Are Included For Those Instructors Who Wish Include These Topics In Their Course. The Author Includes Hints Throughout The Text To Help Students Solve Challenging Problems. An Online Instructor's Solutions Manual Is Also Available.
Closer And Closer Is The Ideal First Introduction To Real Analysis For Upper-Level Undergraduate Math Majors. The Text Is Divided Into Two Main Parts; The Core Material Of The Subject Is Covered In Chapters 1-12, And A Series Of Cases, Examples, Applications, And Projects, Collectively Called Excursions Form The Second Half Of The Book. These Excursions Are Designed To Bring The Concepts Of Real Analysis To Light And To Allow Students To Work Through Numerous Interesting Problems With Ease.
Assuming minimal background on the part of students, this text gradually develops the principles of basic real analysis and presents the background necessary to understand applications used in such disciplines as statistics, operations research, and engineering. The text presents the first elementary exposition of the gauge integral and offers a clear and thorough introduction to real numbers, developing topics in n-dimensions, and functions of several variables. Detailed treatments of Lagrange multipliers and the Kuhn-Tucker Theorem are also presented. The text concludes with coverage of important topics in abstract analysis, including the Stone-Weierstrass Theorem and the Banach Contraction Principle.
Das Lehrbuch vermittelt solides Basiswissen zu den thematischen Schwerpunkten Produktmasse, Fourier-Transformation, Transformationsformel, Konvergenzbegriffe, absolute Stetigkeit und Masse auf topologischen Raumen. Hoehepunkte sind die Herleitung des Riesz'schen Darstellungssatzes und der Beweis der Existenz und Eindeutigkeit des Haar'schen Masses. Der Band enthalt ferner mathematikhistorische Ausfluge und Kurzportrats von Mathematikern, die zum Thema des Buchs wichtige Beitrage geliefert haben, sowie zahlreiche UEbungsaufgaben zur Vertiefung des Stoffs.
Reellwertige Funktionen von mehreren reellen Veranderlichen.- Differentialrechnung vektorwertiger Funktionen.- Mehrdimensionale Integration.- Flachen und Flachenintegrale.- Stammfunktionen und Wegunabhangigkeit von Kurven- und Flachenintegralen.- Integralsatze von Gauss und Stokes.- Gewoehnliche Differentialgleichungen.
Dieses Buch bietet Loesungen zu den 240 Aufgaben aus dem Buch "Mathematik fur Ingenieure und Naturwissenschaftler - Band 2: Analysis in R^n und gewoehnliche Differentialgleichungen". Die Loesungen sind detailliert und verstandlich ausgearbeitet, bei einigen Aufgaben werden alternative Loesungswege vorgestellt und verglichen. Bedingt durch das breite Aufgabenspektrum eignet sich dieses Aufgaben- und Loesungsbuch fur diverse Studiengange. Neben den Studierenden der Ingenieurwissenschaften und technisch-physikalisch orientierten Studiengange profitieren auch in besonderer Weise Lehramtsstudierende und Studierende des Faches Mathematik von der Aufgabenvielfalt.
This volume 6 of the Collected Works comprises 27 papers by V.I.Arnold, one of the most outstanding mathematicians of all times, written in 1991 to 1995. During this period Arnold's interests covered Vassiliev's theory of invariants and knots, invariants and bifurcations of plane curves, combinatorics of Bernoulli, Euler and Springer numbers, geometry of wave fronts, the Berry phase and quantum Hall effect. The articles include a list of problems in dynamical systems, a discussion of the problem of (in)solvability of equations, papers on symplectic geometry of caustics and contact geometry of wave fronts, comments on problems of A.D.Sakharov, as well as a rather unusual paper on projective topology. The interested reader will certainly enjoy Arnold's 1994 paper on mathematical problems in physics with the opening by-now famous phrase "Mathematics is the name for those domains of theoretical physics that are temporarily unfashionable." The book will be of interest to the wide audience from college students to professionals in mathematics or physics and in the history of science. The volume also includes translations of two interviews given by Arnold to the French and Spanish media. One can see how worried he was about the fate of Russian and world mathematics and science in general.
An accessible introduction to real analysis and its connection to elementary calculus Bridging the gap between the development and history of real analysis, "Introduction to Real Analysis: An Educational Approach" presents a comprehensive introduction to real analysis while also offering a survey of the field. With its balance of historical background, key calculus methods, and hands-on applications, this book provides readers with a solid foundation and fundamental understanding of real analysis. The book begins with an outline of basic calculus, including a close examination of problems illustrating links and potential difficulties. Next, a fluid introduction to real analysis is presented, guiding readers through the basic topology of real numbers, limits, integration, and a series of functions in natural progression. The book moves on to analysis with more rigorous investigations, and the topology of the line is presented along with a discussion of limits and continuity that includes unusual examples in order to direct readers' thinking beyond intuitive reasoning and on to more complex understanding. The dichotomy of pointwise and uniform convergence is then addressed and is followed by differentiation and integration. Riemann-Stieltjes integrals and the Lebesgue measure are also introduced to broaden the presented perspective. The book concludes with a collection of advanced topics that are connected to elementary calculus, such as modeling with logistic functions, numerical quadrature, Fourier series, and special functions. Detailed appendices outline key definitions and theorems in elementary calculus and also present additional proofs, projects, and sets in real analysis. Each chapter references historical sources on real analysis while also providing proof-oriented exercises and examples that facilitate the development of computational skills. In addition, an extensive bibliography provides additional resources on the topic. "Introduction to Real Analysis: An Educational Approach" is an ideal book for upper- undergraduate and graduate-level real analysis courses in the areas of mathematics and education. It is also a valuable reference for educators in the field of applied mathematics.
A uniquely accessible book for general measure and integration, emphasizing the real line, Euclidean space, and the underlying role of translation in real analysis "Measure and Integration: A Concise Introduction to Real Analysis" presents the basic concepts and methods that are important for successfully reading and understanding proofs. Blending coverage of both fundamental and specialized topics, this book serves as a practical and thorough introduction to measure and integration, while also facilitating a basic understanding of real analysis. The author develops the theory of measure and integration on abstract measure spaces with an emphasis of the real line and Euclidean space. Additional topical coverage includes: Measure spaces, outer measures, and extension theorems Lebesgue measure on the line and in Euclidean space Measurable functions, Egoroff's theorem, and Lusin's theorem Convergence theorems for integrals Product measures and Fubini's theorem Differentiation theorems for functions of real variables Decomposition theorems for signed measures Absolute continuity and the Radon-Nikodym theorem Lp spaces, continuous-function spaces, and duality theorems Translation-invariant subspaces of L2 and applications The book's presentation lays the foundation for further study of functional analysis, harmonic analysis, and probability, and its treatment of real analysis highlights the fundamental role of translations. Each theorem is accompanied by opportunities to employ the concept, as numerous exercises explore applications including convolutions, Fourier transforms, and differentiation across the integral sign. Providing an efficient and readable treatment of this classical subject, "Measure and Integration: A Concise Introduction to Real Analysis" is a useful book for courses in real analysis at the graduate level. It is also a valuable reference for practitioners in the mathematical sciences.
Mehr als 300 Beispiele aus den Gebieten der mehrdimensionalen Analysis, der Funktionalanalysis und der Differentialgleichungen Enthalt detaillierte Loesungen zu allen Aufgaben Optimales Begleitbuch fur Studierende und Dozenten der Mathematik
This textbook originates from a course taught by the late Ken Ireland in 1972. Designed to explore the theoretical underpinnings of undergraduate mathematics, the course focused on interrelationships and hands-on experience. Readers of this textbook will be taken on a modern rendering of Ireland's path of discovery, consisting of excursions into number theory, algebra, and analysis. Replete with surprising connections, deep insights, and brilliantly curated invitations to try problems at just the right moment, this journey weaves a rich body of knowledge that is ideal for those going on to study or teach mathematics. A pool of 200 'Dialing In' problems opens the book, providing fuel for active enquiry throughout a course. The following chapters develop theory to illuminate the observations and roadblocks encountered in the problems, situating them in the broader mathematical landscape. Topics cover polygons and modular arithmetic; the fundamental theorems of arithmetic and algebra; irrational, algebraic and transcendental numbers; and Fourier series and Gauss sums. A lively accompaniment of examples, exercises, historical anecdotes, and asides adds motivation and context to the theory. Return trips to the Dialing In problems are encouraged, offering opportunities to put theory into practice and make lasting connections along the way. Excursions in Number Theory, Algebra, and Analysis invites readers on a journey as important as the destination. Suitable for a senior capstone, professional development for practicing teachers, or independent reading, this textbook offers insights and skills valuable to math majors and high school teachers alike. A background in real analysis and abstract algebra is assumed, though the most important prerequisite is a willingness to put pen to paper and do some mathematics.
This volume explores A.P. Morse's (1911-1984) development of a formal language for writing mathematics, his application of that language in set theory and mathematical analysis, and his unique perspective on mathematics. The editor brings together a variety of Morse's works in this compilation, including Morse's book A Theory of Sets, Second Edition (1986), in addition to material from another of Morse's publications, Web Derivatives, and notes for a course on analysis from the early 1950's. Because Morse provided very little in the way of explanation in his written works, the editor's commentary serves to outline Morse's goals, give informal explanations of Morse's formal language, and compare Morse's often unique approaches to more traditional approaches. Minor corrections to Morse's previously published works have also been incorporated into the text, including some updated axioms, theorems, and definitions. The editor's introduction thoroughly details the corrections and changes made and provides readers with valuable insight on Morse's methods. A.P. Morse's Set Theory and Analysis will appeal to graduate students and researchers interested in set theory and analysis who also have an interest in logic. Readers with a particular interest in Morse's unique perspective and in the history of mathematics will also find this book to be of interest.
This book provides a comprehensive, in-depth overview of elementary mathematics as explored in Mathematical Olympiads around the world. It expands on topics usually encountered in high school and could even be used as preparation for a first-semester undergraduate course. This first volume covers Real Numbers, Functions, Real Analysis, Systems of Equations, Limits and Derivatives, and much more. As part of a collection, the book differs from other publications in this field by not being a mere selection of questions or a set of tips and tricks that applies to specific problems. It starts from the most basic theoretical principles, without being either too general or too axiomatic. Examples and problems are discussed only if they are helpful as applications of the theory. Propositions are proved in detail and subsequently applied to Olympic problems or to other problems at the Olympic level. The book also explores some of the hardest problems presented at National and International Mathematics Olympiads, as well as many essential theorems related to the content. An extensive Appendix offering hints on or full solutions for all difficult problems rounds out the book.
This volume collects two articles by Christine Laurent-Thiebaut and Jurgen Leiterer which were submitted to, and accepted by the Annali della Scuola Normale Superiore, Classe di Scienze: The q-convex case; the q-concave case. Owing to the character of the systematic exposition of the new scientific results achieved and to the size of the work, the authors agreed to have the two papers published in a separate volume.
We consider in Rn a differential operator P(D), P a polynomial, with constant coefficients. Let U be an open set in Rn and A(U) be the space of real analytic functions on U. We consider the equation P(D)u=f, for f in A(U) and look for a solution in A(U). Hormander proved a necessary and sufficient condition for the solution to exist in the case U is convex. From this theorem one derives the fact that if a cone W admits a Phragmen-Lindeloff principle then at each of its non-zero real points the real part of W is pure dimensional of dimension n-1. The Phragmen-Lindeloff principle is reduced to the classical one in C. In this paper we consider a general Hilbert complex of differential operators with constant coefficients in Rn and we give, for U convex, the necessary and sufficient conditions for the vanishing of the H1 groups in terms of the generalization of Phragmen-Lindeloff principle. |
You may like...
Operator Theory And Analysis Of Infinite…
Palle Jorgensen, Erin P. J. Pearse
Hardcover
R3,532
Discovery Miles 35 320
Extremal Problems in Interpolation…
Sergey Kislyakov, Natan Kruglyak
Hardcover
R2,691
Discovery Miles 26 910
Nonlinear Differential Problems with…
Dumitru Motreanu
Paperback
Real Analysis with an Introduction to…
Don Hong, Jian zhong Wang, …
Hardcover
R2,200
Discovery Miles 22 000
|