![]() |
![]() |
Your cart is empty |
||
Dalton's theory of the atom is generally considered to be what made
the atom a scientifically fruitful concept in chemistry. To be
sure, by Dalton's time the atom had already had a two-millenium
history as a philosophical idea, and corpuscular thought had long
been viable in natural philosophy (that is, in what we would today
call physics).
The American Chemical Society (ACS) Committee on Analytical Reagents sets the specifications for most chemicals used in analytical testing. Currently, the ACS is the only organization in the world that sets requirements and develops validated methods for determining the purity of reagent chemicals. These specifications have also become the de facto standards for chemicals used in many high-purity applications. Publications and organizations that set specifications or promulgate analytical testing methods-such as the United States Pharmacopeia and the U.S. Environmental Protection Agency-specify that ACS reagent-grade purity be used in their test procedures. The Eleventh Edition incorporates the "supplements" accumulated over the past eight years, removes some obsolete test methods, improves instructions for many existing ones, and also introduces some new methods. Overall, the safety, accuracy, or ease of use in specifications for about 70 of the 430 listed reagents has been improved, and seven new reagents have been added.
Consumers, regulators, and the food industry increasingly require that foods comply not only with label descriptions of food content, but also with information regarding the food's origin. For example, the wine industry has a long history of labeling wines based on varietal, regional, or age (vintage)-related properties. However, regulatory agencies are now beginning to require methods to confirm this label information. Food retailers are also facing voluntary or mandatory labeling requirements that will indicate regional or country-of-origin, species and/or varietal information. As a result, development of reliable analytical methods to confirm the authenticity of the label information is needed. This book presents the latest research on food and wine authentication. The chapters are authored by leading international scientists whose research focuses on the development and application of analytical methodologies used for the authentication of food and beverages.
Model theory is used in every theoretical branch of analytic philosophy: in philosophy of mathematics, in philosophy of science, in philosophy of language, in philosophical logic, and in metaphysics. But these wide-ranging uses of model theory have created a highly fragmented literature. On the one hand, many philosophically significant results are found only in mathematics textbooks: these are aimed squarely at mathematicians; they typically presuppose that the reader has a serious background in mathematics; and little clue is given as to their philosophical significance. On the other hand, the philosophical applications of these results are scattered across disconnected pockets of papers. The first aim of this book, then, is to explore the philosophical uses of model theory, focusing on the central topics of reference, realism, and doxology. Its second aim is to address important questions in the philosophy of model theory, such as: sameness of theories and structure, the boundaries of logic, and the classification of mathematical structures. Philosophy and Model Theory will be accessible to anyone who has completed an introductory logic course. It does not assume that readers have encountered model theory before, but starts right at the beginning, discussing philosophical issues that arise even with conceptually basic model theory. Moreover, the book is largely self-contained: model-theoretic notions are defined as and when they are needed for the philosophical discussion, and many of the most philosophically significant results are given accessible proofs.
In 1687 Isaac Newton ushered in a new scientific era in which laws of nature could be used to predict the movements of matter with almost perfect precision. Newton's physics also posed a profound challenge to our self-understanding, however, for the very same laws that keep airplanes in the air and rivers flowing downhill tell us that it is in principle possible to predict what each of us will do every second of our entire lives, given the early conditions of the universe. Can it really be that even while you toss and turn late at night in the throes of an important decision and it seems like the scales of fate hang in the balance, that your decision is a foregone conclusion? Can it really be that everything you have done and everything you ever will do is determined by facts that were in place long before you were born? This problem is one of the staples of philosophical discussion. It is discussed by everyone from freshman in their first philosophy class, to theoretical physicists in bars after conferences. And yet there is no topic that remains more unsettling, and less well understood. If you want to get behind the facade, past the bare statement of determinism, and really try to understand what physics is telling us in its own terms, read this book. The problem of free will raises all kinds of questions. What does it mean to make a decision, and what does it mean to say that our actions are determined? What are laws of nature? What are causes? What sorts of things are we, when viewed through the lenses of physics, and how do we fit into the natural order? Ismael provides a deeply informed account of what physics tells us about ourselves. The result is a vision that is abstract, alien, illuminating, and-Ismael argues-affirmative of most of what we all believe about our own freedom. Written in a jargon-free style, How Physics Makes Us Free provides an accessible and innovative take on a central question of human existence.
This book outlines a simple and easy-to-follow process for auditing building operation to identify and reduce energy consumption. It explains the operational and cost-based opportunities, assessing the current conditions, analyzing the opportunities, and reporting the findings and documenting the plan. The book discusses the different building components and systems and how they affect energy efficiency and describes the operational energy efficiencies that can be gained by implementing no cost changes or alternate maintenance activities already funded. Capital improvement opportunities, and evaluating Return on Investment and life cycle replacement of equipment are also covered.
Revise smart and save! Our Revision Workbooks are designed to help students develop vital skills throughout the course in preparation for the exam with: One-to-one page match with the OCR AS/A level Chemistry Revision Guide so you can find the practice you need quickly and easily Skills building pages and practice questions in the style of the new exams Guided support and hints providing additional scaffolding, helping you avoid common pitfalls Full set of practice papers written to match the new specification exactly
Nanoscale Materials in Chemistry describes research on the
development of catalysts and adsorbents based on nanoscale
materials. It includes new fundamental research and applications,
beginning with a review of research on the development of nanoscale
metal oxides that have environmental applications. Information on
product development is described for selected products that have
been developed and commercialized.
This book is targeted for chemists and environmental scientists and
engineers who are engaged in understanding the chemistry of
high-valent iron (Ferrate) and in applications of chemical oxidants
to treat contaminants in water, wastewater, and industrial
effluents. This book will be of interest to biochemical engineers
and microbiologists who want to understand Ferrate's disinfection
performance. Additionally, the book will be of tremendous interest
to graduate students who are performing research on the
understanding of the mechanism of higher oxidation states of iron
and in developing innovative drinking water and wastewater
treatment technologies.
This book is about pleasure. It's also about pain. Most important, it's about how to find the delicate balance between the two, and why now more than ever finding balance is essential. We're living in a time of unprecedented access to high-reward, high-dopamine stimuli: drugs, food, news, gambling, shopping, gaming, texting, sexting, Facebooking, Instagramming, YouTubing, tweeting... The increased numbers, variety, and potency is staggering. The smartphone is the modern-day hypodermic needle, delivering digital dopamine 24/7 for a wired generation. As such we've all become vulnerable to compulsive overconsumption. In Dopamine Nation, Dr. Anna Lembke, psychiatrist and author, explores the exciting new scientific discoveries that explain why the relentless pursuit of pleasure leads to pain...and what to do about it. Condensing complex neuroscience into easy-to-understand metaphors, Lembke illustrates how finding contentment and connectedness means keeping dopamine in check. The lived experiences of her patients are the gripping fabric of her narrative. Their riveting stories of suffering and redemption give us all hope for managing our consumption and transforming our lives. In essence, Dopamine Nation shows that the secret to finding balance is combining the science of desire with the wisdom of recovery.
Measuring metabolic rates is central to important questions in many
areas of scientific research. Unfortunately these measurements are
anything but straightforward, and numerous pitfalls await the
novice and even the experienced investigator.
Developed for the new International A Level specification, these new resources are specifically designed for international students, with a strong focus on progression, recognition and transferable skills, allowing learning in a local context to a global standard. Recognised by universities worldwide and fully comparable to UK reformed GCE A levels. Supports a modular approach, in line with the specification. Appropriate international content puts learning in a real-world context, to a global standard, making it engaging and relevant for all learners. Reviewed by a language specialist to ensure materials are written in a clear and accessible style. The embedded transferable skills, needed for progression to higher education and employment, are signposted so students understand what skills they are developing and therefore go on to use these skills more effectively in the future. Exam practice provides opportunities to assess understanding and progress, so students can make the best progress they can.
The human pathogens Neisseria meningitidis and Neisseria gonorrhoeae are exquisitely adapted to life within the human mucosa, their only natural niche. N. meningitidis is the causative agent of rapidly transmissible meningitis and septic shock. Vaccines developed to control this pathogen can be rendered ineffective by the pathogen's ability to undergo antigenic variation. In contrast, there are no current vaccination prospects for N. gonorrhoeae, the causative agent of sexually transmitted gonorrhoea. Historically, infections caused by N. gonorrhoeae were treated with antibiotics. However, the recent advent of new strains with resistance to all known antibiotics is causing such treatment regimes to fail, necessitating the need for new and more effective control strategies. In this book, leading Neisseria authorities review the most important research on pathogenic Neisseria to provide a timely overview of the field. The topics covered include: the link between pathogenesis and important metabolic pathways * vaccine development * antibiotic resistance * transcriptomics of regulatory networks * regulatory small RNAs * interactions with neutrophils * advances in humanized mouse models. An essential guide for research scientists, advanced students, clinicians, and other professionals working with Neisseria, the book is a recommended text for all microbiology libraries.
'Motor Cognition' describes the field of motor cognition - one to which the author's contribution has been seminal. The book examines how the motor actions we perform and watch others perform play a pivotal role in the construction of the 'self' - our ability to acknowledge and recognise our own identity.
This book presents the SPH method (Smoothed-Particle Hydrodynamics)
for fluid modelling from a theoretical and applied viewpoint. It
comprises two parts that refer to each other. The first one,
dealing with the fundamentals of Hydraulics, is based on the
elementary principles of Lagrangian and Hamiltonian Mechanics. The
specific laws governing a system of macroscopic particles are
built, before large systems involving dissipative processes are
explained. The continua are discussed, and a fairly exhaustive
account of turbulence is given. The second part discloses the bases
of the SPH Lagrangian numerical method from the continuous
equations, as well as from discrete variational principles, setting
out the method's specific properties of conservativity and
invariance. Various numerical schemes are compared, permanently
referring to the physics as dealt with in the first part.
Applications to schematic instances are discussed, and, ultimately,
practical applications to the dimensioning of coastal and fluvial
structures are considered.
Inspired by the opportunities and challenges presented by rapid advances in the fields of retrieval of chemical and other scientific information, several speakers presented at a symposium, The History of the Future of Chemical Information, on Aug. 20, 2012, at the 244th Meeting of the American Chemical Society in Philadelphia, PA. Storage and retrieval is of undeniable value to the conduct of chemical research. The participants believe that past practices in this field have not only contributed to the increasingly rapid evolution of the field but continue to do so, hence the somewhat unusual title. Even with archival access to several of the presentations, a number of the presenters felt that broader access to this information is of value. Thus, the presenters decided to create an ACS Symposium book based on the topic, with the conviction that it would be valuable to chemists of all disciplines. The past is a moving target depending on the vagaries of technology, economics, politics and how researchers and professionals choose to build on it. The aim of The History of the Future of Chemical Information is to critically examine trajectories in chemistry, information and communication as determined by the authors in the light of current and possible future practices of the chemical information profession. Along with some additional areas primarily related to present and future directions, this collection contains most of the topics covered in the meeting symposium. Most of the original authors agreed to write chapters for this book. Much of the historical and even current material is scattered throughout the literature so the authors strived to gather this information into a discrete source. Faced with the rapid evolution of such aspects as mobile access to information, cloud computing, and public resource production, this book will be not only of interest but provide valuable insight to this rapidly evolving field, both to practitioners within the field of chemical information and chemists everywhere whose need for current and accurate information on chemistry and related fields is increasingly important.
Assuming no previous study in logic, this informal yet rigorous text covers the material of a standard undergraduate first course in mathematical logic, using natural deduction and leading up to the completeness theorem for first-order logic. At each stage of the text, the reader is given an intuition based on standard mathematical practice, which is subsequently developed with clean formal mathematics. Alongside the practical examples, readers learn what can and can't be calculated; for example the correctness of a derivation proving a given sequent can be tested mechanically, but there is no general mechanical test for the existence of a derivation proving the given sequent. The undecidability results are proved rigorously in an optional final chapter, assuming Matiyasevich's theorem characterising the computably enumerable relations. Rigorous proofs of the adequacy and completeness proofs of the relevant logics are provided, with careful attention to the languages involved. Optional sections discuss the classification of mathematical structures by first-order theories; the required theory of cardinality is developed from scratch. Throughout the book there are notes on historical aspects of the material, and connections with linguistics and computer science, and the discussion of syntax and semantics is influenced by modern linguistic approaches. Two basic themes in recent cognitive science studies of actual human reasoning are also introduced. Including extensive exercises and selected solutions, this text is ideal for students in logic, mathematics, philosophy, and computer science.
Primary sexual traits, those structures and processes directly
involved in reproduction, are some of the most diverse,
specialized, and bizarre in the animal kingdom. Moreover,
reproductive traits are often species-specific, suggesting that
they evolved very rapidly. This diversity, long the province of
taxonomists, has recently attracted broader interest from
evolutionary biologists, especially those interested in sexual
selection and the evolution of reproductive strategies.
The chapters in this monograph are contributions from the Advances in Quantum Monte Carlo symposium held at Pacifichem 2010, International Chemical Congress of Pacific Basin Societies. The symposium was dedicated to celebrate the career of James B. Anderson, a notable researcher in the field. Quantum Monte Carlo provides an ab initio solution to the Schroedinger equation by performing a random walk through configuration space in imaginary time. Benchmark calculations suggest that its most commonly-used variant, "fixed-node" diffusion Monte Carlo, estimates energies with an accuracy comparable to that of high-level coupled-cluster calculations. These two methods, each having advantages and disadvantages, are complementary "gold-standards" of quantum chemistry. There are challenges facing researchers in the field, several of which are addressed in the chapters in this monograph. These include improving the accuracy and precision of quantum Monte Carlo calculations; understanding the exchange nodes and utilizing the simulated electron distribution; extending the method to large and/or experimentally-challenging systems; and developing hybrid molecular mechanics/dynamics and Monte Carlo algorithms.
This unique and comprehensive volume provides an up-to-date account of the literature on the subject of determining the structure of rings over which cyclic modules or proper cyclic modules have a finiteness condition or a homological property. The finiteness conditions and homological properties are closely interrelated in the sense that either hypothesis induces the other in some form. This is the first book to bring all of this important material on the subject together. Over the last 25 years or more numerous mathematicians have investigated rings whose factor rings or factor modules have a finiteness condition or a homological property. They made important contributions leading to new directions and questions, which are listed at the end of each chapter for the benefit of future researchers. There is a wealth of material on the topic which is combined in this book, it contains more than 200 references and is not claimed to be exhaustive. This book will appeal to graduate students, researchers, and professionals in algebra with a knowledge of basic noncommutative ring theory, as well as module theory and homological algebra, equivalent to a one-year graduate course in the theory of rings and modules.
General Relativity is a beautiful geometric theory, simple in its mathematical formulation but leading to numerous consequences with striking physical interpretations: gravitational waves, black holes, cosmological models, and so on. This introductory textbook is written for mathematics students interested in physics and physics students interested in exact mathematical formulations (or for anyone with a scientific mind who is curious to know more of the world we live in), recent remarkable experimental and observational results which confirm the theory are clearly described and no specialised physics knowledge is required. The mathematical level of Part A is aimed at undergraduate students and could be the basis for a course on General Relativity. Part B is more advanced, but still does not require sophisticated mathematics. Based on Yvonne Choquet-Bruhat's more advanced text, General Relativity and the Einstein Equations, the aim of this book is to give with precision, but as simply as possible, the foundations and main consequences of General Relativity. The first five chapters from General Relativity and the Einstein Equations have been updated with new sections and chapters on black holes, gravitational waves, singularities, and the Reissner-Nordstroem and interior Schwarzchild solutions. The rigour behind this book will provide readers with the perfect preparation to follow the great mathematical progress in the actual development, as well as the ability to model, the latest astrophysical and cosmological observations. The book presents basic General Relativity and provides a basis for understanding and using the fundamental theory.
Low-Energy Nuclear Reactions and New Energy is a summary of
selected experimental and theoretical research performed over the
last 19 years that gives profound and unambiguous evidence for low
energy nuclear reaction (LENR), historically known as cold fusion.
Rapid advances in high-throughput genome sequencing technologies foreshadow a near-future in which millions of individuals will gain affordable access to their complete genome sequence. This promises to offer unprecedented insights into the fundamental biological nature of ourselves and our species: where we came from, how we begin our lives, how we develop and grow, how we interact with our environment, how we get sick, how we get well, and how we age. Personal genomics is an essential component of the inevitable transition towards personalized health and medicine. As the medical establishment begins to explore and evaluate the role of personal genomics in health and medicine, both clinicians and patients alike will gain from becoming well versed in both the power and the pitfalls of personal genomic information. Furthermore, it is likely that all students of the biomedical sciences will soon be required to gain crucial understanding in the emerging field of personal genomics. Exploring Personal Genomics provides a novel, inquiry-based approach to the understanding and interpretation of the practical, medical, physiological, and societal aspects of personal genomic information. The material is presented in two parts: the first provides readers of all backgrounds with a fundamental understanding of the biology of human genomes, information on how to obtain and understand digital representations of personal genomic data, tools and techniques for exploring the personal genomics of ancestry and genealogy, discovery and interpretation of genetic trait associations, and the role of personal genomics in drug response. The second part offers more advanced readers an understanding of the science, tools, and techniques for investigating interactions between a personal genome and the environment, connecting DNA to physiology, and assessing rare variants and structural variation. This book aims to support undergraduate and graduate studies in medicine, genetics, molecular biology, and bioinformatics. Additionally, the design of the content is such that medical practitioners, professionals working in the biomedical sciences or related fields, and motivated lay individuals interested in exploring their personal genetic data should find it relevant and approachable.
Students taught with inquiry-based methods have been shown to make significant progress in their ability to formulate hypotheses, make proper assumptions, design and execute investigations, understand variables, record data, and synthesize new knowledge. are taught with it. This text presents a series of experiments that are intended to serve as the solid basis for a first-year chemistry or physical sciences course, using an inquiry based approach. Each provides: 1)instructions for an experiment; 2) in-depth teachers notes and 3) a sample lab report.
Although the problem of controlling the spread of exotic invasive plant and animal species in the United States has been recognized for quite some time, it has been lacking an adequate legislative mandate, public awareness, and sufficient funding to meet the challenge. This ACS Symposium Series title showcases the many diverse efforts being made to control invasive species at the federal, state, and local levels. It recognizes the global extent of the problem and compares the methods used in other countries with those of the U.S., and includes recommendations of how best to proceed from here. |
![]() ![]() You may like...
Sasol Birds Of Southern Africa
Ian Sinclair, Phil Hockey
Paperback
![]()
Third Millennium Thinking - Creating…
Saul Perlmutter, Robert Maccoun, …
Paperback
|