![]() |
![]() |
Your cart is empty |
||
A major strength of American Chemical Society (ACS) is the large number of volunteers who help to grow and sustain the organization, from local sections to technical divisions, from regional to national meetings, from task forces to national committees, and from conducting research to writing and reviewing manuscripts for journals. Some of them spend literally thousands of hours on behalf of ACS and the global chemistry enterprise, helping students or fellow scientists, organizing meetings and symposia, and reaching out to the local communities. One of the people who excelled in these efforts was the late Prof. Ernest L. Eliel. For many years he taught at the University of Notre Dame and the University of North Carolina and was an acknowledged leader in organic stereochemistry and conformational analysis. He was also a leader at ACS, serving as ACS President in 1992 and Chair of ACS Board of Directors in 1987-89. Unfortunately Prof. Eliel died in 2008, but the ACS held a symposium in 2016 honoring his work. This book features two volumes highlighting stereochemistry and global connectivity, which represent two of the key legacies of Prof. Eliel. Because stereochemistry is a fundamental chemistry concept, ongoing research is carried out in different subfields of chemistry (such as organic, medicinal, carbohydrates, polymers), using various analytical techniques (such as NMR, X-ray crystallography, and circular dichroism). The two volumes of this book contain many research papers that represent cutting-edge research in all the above areas. Because chemistry is now a world-wide enterprise, global connectivity is important to chemistry practitioners, and the chapters on international activities should be of great interest as well.
In the high energy gas flows, associating high velocities and high
temperatures, physical and chemical processes such as molecular
vibrational excitation, dissociation, ionisation or various
reactions take palce and deeply influence the structure of the
flows. The characteristic times of these processes have the same
order of magnitude as aerodynamic characteristic times so that
these reactive media are generally in thermodynamic and chemical
non-equilibrium. This book presents a general introductory study of
these media. In the first part their fundamental statistical
aspects are described, starting from their discrete structure and
taking into account the interactions between elementary particles:
the transport phenomena, relaxation and kinetics as well as their
coupling are thus analysed and illustrated by many examples. The
second part deals with the macroscopic re-entry bodies. Finally the
experimental aspects of these flows, their simulations in shock
tube and shock tunnel are described as well as their application,
particularly in the aero- spatial domain.
This book is meant to be a companion volume for the ACS Symposium Series Book entitled Nuts and Bolts of Chemical Education Research. In the Nuts and Bolts book (edited by Diane M. Bunce and Renee Cole), readers were presented with information on how to conduct quality chemical education research. In the Myth book, exemplars of chemical education research are featured. In the cases where the chapter in the book is describing research that has already been published (typically in the Journal of Chemical Education), additional information is provided either in terms of research questions investigated that were not reported in the published article or background information on decisions made in the research that helped the investigation. The main focus of this type of discussion is to engage the reader in the reality of doing chemical education research including a discussion of the authors' motivation. It is expected that these two books could be used as textbooks for graduate chemical education courses showing how to do chemical education research and then providing examples of quality research.
During the past two decades international collaborative studies
have yielded extensive information on genome sequences, genome
architecture and their variations. The challenge we now face is to
understand how these variations impact structure and function of
organelles, physiological systems and phenotype. The goal of this
book is to present steps in the pathways of exploration to connect
genotype to phenotype and to consider how alterations in genomes
impact disease.
Analytical Mechanics for Relativity and Quantum Mechanics is an
innovative and mathematically sound treatment of the foundations of
analytical mechanics and the relation of classical mechanics to
relativity and quantum theory. It is intended for use at the
introductory graduate level. A distinguishing feature of the book
is its integration of special relativity into teaching of classical
mechanics. After a thorough review of the traditional theory, Part
II of the book introduces extended Lagrangian and Hamiltonian
methods that treat time as a transformable coordinate rather than
the fixed parameter of Newtonian physics. Advanced topics such as
covariant Langrangians and Hamiltonians, canonical transformations,
and Hamilton-Jacobi methods are simplified by the use of this
extended theory. And the definition of canonical transformation no
longer excludes the Lorenz transformation of special relativity.
The OCR A level Lab Books support students in completing the A level Core Practical requirements. This lab book includes: all the instructions students need to perform the Core Practicals, consistent with our A level online teaching resources writing frames for students to record their results and reflect on their work CPAC Skills Checklists, so that students can track the practical skills they have learned, in preparation for their exams practical skills practice questions a full set of answers. This lab book is designed to help students to: structure their A level lab work to ensure that they cover the Core Practical assessment criteria track their progress in the development of A level practical skills create a record of all of the Core Practical work they will have completed, in preparation for revision.
Ethicists and psychologists have become increasingly interested in the development of virtue in recent years, approaching the topic from the perspectives of virtue ethics and developmental psychology respectively. Such interest in virtue development has spread beyond academia, as teachers and parents have increasingly striven to cultivate virtue as part of education and child-rearing. Looking at these parallel trends in the study and practice of virtue development, the essays in this volume explore such questions as: How can philosophical work on virtue development inform psychological work on it, and vice versa? How should we understand virtue as a dimension of human personality? What is the developmental foundation of virtue? What are the evolutionary aspects of virtue and its development? How is virtue fostered? How is virtue exemplified in behavior and action? How is our conception of virtue influenced by context and by developmental and social experiences? What are the tensions, impediments and prospects for an integrative field of virtue study? Rather than centering on each discipline, the essays in this volume are orgnaized around themes and engage each other in a broader dialogue. The volume begins with an introductory essay from the editors that explains the full range of philosophical and empirical issues that have surrounded the notion of virtue in recent years.
Many of the encounters between farming and wildlife, especially vertebrates, involve some level of conflict which can cause disadvantage to both the wildlife and the people involved. Through a series of WildCRU case-studies, this volume investigates the sources of the problems, and ultimately of the threats to conservation, discussing a variety of remedies and mitigations, and demonstrating the benefits of evidence-based, inter-disciplinary policy.
Since antiquity, people have searched for a way to understand the colors we see--what they are, how many there are, and how they can be systematically identified and arranged in some kind of order. How to order colors is not merely a philosophical question, it also has many practical applications in art, design, and commerce. Our intense interest in color and its myriad practical applications have led people throughout history to develop many systems to characterize and order it. The number of color order systems developed throughout history is unknown but ranges in the hundreds. Many are no longer used, but continue to be of historical interest. Despite wrong turns and slow progress, our understanding of color and its order has improved steadily. Although full understanding continues to elude us, it seems clear that it will ultimately come from research in neurobiology, perception and consciousness. Color Ordered is a comprehensive, in-depth compendium of over 170 systems, dating from antiquity to the present. In it, Rolf Kuehni and Andreas Schwarz present a history and categorization of color systems, describe each one using original figures and schematic drawings, and provide a broad review of the underlying theory. Included are a brief overview of color vision and a synthesis of the various systems. This volume is a unique and valuable resource for researchers in color vision, and visual perception, as well as for neuroscientists, art historians, artists, and designers.
This book focuses on broadly defined areas of chemical information science- with special emphasis on chemical informatics- and computer-aided molecular design. The computational and cheminformatics methods discussed, and their application to drug discovery, are essential for sustaining a viable drug development pipeline. It is increasingly challenging to identify new chemical entities and the amount of money and time invested in research to develop a new drug has greatly increased over the past 50 years. The average time to take a drug from clinical testing to approval is currently 7.2 years. Therefore, the need to develop predictive computational techniques to drive research more efficiently to identify compounds and molecules, which have the greatest likelihood of being developed into successful drugs for a target, is of great significance. New methods such as high throughput screening (HTS) and techniques for the computational analysis of hits have contributed to improvements in drug discovery efficiency. The SARMs developed by Jurgen and colleagues have enabled display of SAR data in a more transparent scaffold/functional SAR table. There are many tools and databases available for use in applied drug discovery techniques based on polypharmacology. The cheminformatics approaches and methodologies presented in this volume and at the Skolnik Award Symposium will pave the way for improved efficiency in drug discovery. The lectures and the chapters also reflect the various aspects of scientific enquiry and research interests of the 2015 Herman Skolnik award recipient.
We are becoming increasingly aware of the overwhelming pollution of our limited water resources on this planet. And while many contaminants originate from Mother Earth, most water pollution comes as a direct result of anthropogenic activities. This problem has become so immense that it threatens the future of all humanity. If effective measures to reduce and/or remediate water pollution and its sources are not found, it is estimated by UN that 2.7 billion people will face water shortage by 2025 as opposed to 1.2 billion people who do not have access to clean drinking water now. Therefore, development of novel green technologies to address this major problem represents a priority of the highest importance. This book discusses green chemistry and other novel solutions to the water pollution problems which includes some interesting applications of nanoparticles. Novel Solutions to Water Pollution is a useful and informative text for those engaged in issues of water quality and water pollution remediation at operational, administrative, academic, or regulatory levels.
Einstein's general theory of relativity is introduced in this
advanced undergraduate and beginning graduate level textbook.
Topics include special relativity, in the formalism of Minkowski's
four-dimensional space-time, the principle of equivalence,
Riemannian geometry and tensor analysis, Einstein field equation,
as well as many modern cosmological subjects, from primordial
inflation and cosmic microwave anisotropy to the dark energy that
propels an accelerating universe.
This book introduces the modern field of 3+1 numerical relativity. The book has been written in a way as to be as self-contained as possible, and only assumes a basic knowledge of special relativity. Starting from a brief introduction to general relativity, it discusses the different concepts and tools necessary for the fully consistent numerical simulation of relativistic astrophysical systems, with strong and dynamical gravitational fields. Among the topics discussed in detail are the following; the initial data problem, hyperbolic reductions of the field equations, guage conditions, the evolution of black hole space-times, relativistic hydrodynamics, gravitational wave extraction and numerical methods. There is also a final chapter with examples of some simple numerical space-times. The book is aimed at both graduate students and researchers in physics and astrophysics, and at those interested in relativistic astrophysics.
In the past, the stability of milk and milk products was the primary consideration, but this is no longer the principal objective due to the evolution of modern sanitary practices as well as pasteurization. Today, the manufacture of dairy products of consistently good flavor and texture is crucial. In previous flavor studies, researchers identified hundreds of volatile compounds, with little or no attention paid to their sensory contribution to overall flavor of dairy products. The availability of powerful chromatographic separation techniques like high resolution gas chromatography in combination with mass spectrometry and olfactory detection ports have revolutionized the work on characterization of dairy flavor. This along with recent developments in sensory methods and our increased knowledge about the genomics of diary culture organisms have allowed great advancements in our understanding of dairy flavor chemistry. Flavor of Dairy Products covers the evolution of dairy flavor research and presents updated information in the areas of instrumental analysis, biochemistry, processing and shelf-life issues related to the flavor of dairy products.
The history of life is a nearly four billion year old story of transformative change. This change ranges from dramatic macroscopic innovations such as the evolution of wings or eyes, to a myriad of molecular changes that form the basis of macroscopic innovations. We are familiar with many examples of innovations (qualitatively new phenotypes that can provide a critical advantage) but have no systematic understanding of the principles that allow organisms to innovate. This book proposes several such principles as the basis of a theory of innovation, integrating recent knowledge about complex molecular phenotypes with more traditional Darwinian thinking. Central to the book are genotype networks: vast sets of connected genotypes that exist in metabolism and regulatory circuitry, as well as in protein and RNA molecules. The theory can successfully unify innovations that occur at different levels of organization. It captures known features of biological innovation, including the fact that many innovations occur multiple times independently, and that they combine existing parts of a system to new purposes. It also argues that environmental change is important to create biological systems that are both complex and robust, and shows how such robustness can facilitate innovation. Beyond that, the theory can reconcile neutralism and selectionism, as well as explain the role of phenotypic plasticity, gene duplication, recombination, and cryptic variation in innovation. Finally, its principles can be applied to technological innovation, and thus open to human engineering endeavours the powerful principles that have allowed life's spectacular success.
This book is aimed at providing a coherent, essentially self-contained, rigorous and comprehensive abstract theory of Feynman's operational calculus for noncommuting operators. Although it is inspired by Feynman's original heuristic suggestions and time-ordering rules in his seminal 1951 paper An operator calculus having applications in quantum electrodynamics, as will be made abundantly clear in the introduction (Chapter 1) and elsewhere in the text, the theory developed in this book also goes well beyond them in a number of directions which were not anticipated in Feynman's work. Hence, the second part of the main title of this book. The basic properties of the operational calculus are developed and certain algebraic and analytic properties of the operational calculus are explored. Also, the operational calculus will be seen to possess some pleasant stability properties. Furthermore, an evolution equation and a generalized integral equation obeyed by the operational calculus are discussed and connections with certain analytic Feynman integrals are noted. This volume is essentially self-contained and we only assume that the reader has a reasonable, graduate level, background in analysis, measure theory and functional analysis or operator theory. Much of the necessary remaining background is supplied in the text itself.
The outcome of innovation processes are determined by complex, historically grown valuation practices. In this book, a wide range of innovations are taken into consideration, from small inventions like entertainment novelties to large societal changes through new technologies. The chapters observe the particular local or distributed sites in which their episodes of innovation take place, and they identify the initial dissonance among those judging a newly proposed alternative. The emphasis of the inquiry, however, is on the practices of valuation that are at work when something succeeds in being "new". The authors represent a wide variety of sub-disciplines and national backgrounds in the social sciences. They share an interest in social valuation and a pragmatist approach. The differences between their empirical evidence reflect the wide variety of appearances that valuation takes in contemporary society. They are anthropologists, economic or cultural sociologists, organization researchers, historians or political scientists. A number of chapters deals with aesthetic valuation, as in the tasting of a new vintage, or in the socio-technical process that shaped successful synthesizer sounds. Other chapters discuss the judgment processes in organizations, like architect offices or consultancy firms, and processes of evaluation and valorization in larger fields of practice, like accounting or mathematics. The studies are both of interest in their various professional fields, and contribute to a more general understanding of the social and cultural conditions under which innovations fail and succeed.
In this book, Chris Eliasmith presents a new approach to understanding the neural implementation of cognition in a way that is centrally driven by biological considerations. He calls the general architecture that results from the application of this approach the Semantic Pointer Architecture (SPA), based on the Semantic Pointer Hypothesis. According to this hypothesis, higher-level cognitive functions in biological systems are made possible by semantic pointers. These pointers are neural representations that carry partial semantic content and can be built up into the complex representational structures necessary to support cognition. The SPA architecture demonstrates how neural systems generate, compose, and control the flow of semantics pointers. Eliasmith describes in detail the theory and empirical evidence supporting the SPA, and presents several examples of its application to cognitive modeling, covering the generation of semantic pointers from visual data, the application of semantic pointers for motor control, and most important, the use of semantic pointers for representation of language-like structures, cognitive control, syntactic generalization, learning of new cognitive strategies, and language-based reasoning. He agues that the SPA provides an alternative to the dominant paradigms in cognitive science, including symbolicism, connectionism, and dynamicism.
This book describes various forms of solar energy conversion techniques in a unified way. The physical framework used to describe the various conversions is endoreversible thermodynamics, a recently developed subset of irreversible thermodynamics . It thus studies situations which are not in equilibrium and in which therefore entropy is continuously created. Nevertheless the mathematics is simple, because the authors consider only stationary situations. Most undergraduate textbooks on thermodynamics emphasize equilibrium thermodynamics and reversible processes. No entropy is created and conversion efficiencies are maximal, equal to the Carnot efficiency. For irreversible conversion processes, the reader learns only that entropy production is positive and that conversion efficiency is lower than the Carnot efficiency. But how great the entropy creation is, and how low the efficiency, is usually not expressed. Endoreversible thermodynamics gives the opportunity to calculate explicit values for a broad class of these processes, including solar energy conversion, which is particularly suited to being described in this way. The book is intended for physicists and engineers interested in renewable energy and irreversible thermodynamics.
Rethinking Thought takes readers into the minds of 30 creative thinkers to show how greatly the experience of thought can vary. It is dedicated to anyone who has ever been told, "You're not thinking!", because his or her way of thinking differs so much from a spouse's, employer's, or teacher's. The book focuses on individual experiences with visual mental images and verbal language that are used in planning, problem-solving, reflecting, remembering, and forging new ideas. It approaches the question of what thinking is by analyzing variations in the way thinking feels. Written by neuroscientist-turned-literary scholar Laura Otis, Rethinking Thought juxtaposes creative thinkers' insights with recent neuroscientific discoveries about visual mental imagery, verbal language, and thought. Presenting the results of new, interview-based research, it offers verbal portraits of novelist Salman Rushdie, engineer Temple Grandin, American Poet Laureate Natasha Trethewey, and Nobel prize-winning biologist Elizabeth Blackburn. It also depicts the unique mental worlds of two award-winning painters, a flamenco dancer, a game designer, a cartoonist, a lawyer-novelist, a theoretical physicist, and a creator of multi-agent software. Treating scientists and artists with equal respect, it creates a dialogue in which neuroscientific findings and the introspections of creative thinkers engage each other as equal partners. The interviews presented in this book indicate that many creative people enter fields requiring skills that don't come naturally. Instead, they choose professions that demand the hardest work and the greatest mental growth. Instead of classifying people as "visual" or "verbal," educators and managers need to consider how thinkers combine visual and verbal skills and how those abilities can be further developed. By showing how greatly individual experiences of thought can vary, this book aims to help readers in all professions better understand and respect the diverse people with whom they work.
This book addresses one of the most challenging problems that plagues the environmental field today-subsurface contamination. The past three decades have ushered in various methods for removal of organic and inorganic contaminants from the subsurface to varying degrees of effectiveness. Because of the site-to-site variability in the nature of contamination characteristics, the pattern of waste disposal and accidental releases, the site characteristics and thus contaminant behavior, and hydrologic conditions, predicting the effectiveness of one treatment method over another is a daunting task. Field demonstration of innovative technologies is a key step in their development, however, only after successful scale-up from laboratory testing. This book features chapters written by researchers who have linked laboratory- and field-scales in efforts to find creative, cost-effective methods for prediction of successful remediation of contaminated soil and ground water. State-of-the-art technologies using physicochemical removal methods and biological methods are discussed in the context of not only their effectiveness in remediating organic and inorganic wastes from various subsurface environments but also in terms of useful flask-scale methods for measuring and predicting their field-scale effectiveness. Chapters address sorption and hydrolysis of pesticides by organoclays, use of Fentons agents to destroy chlorinated solvents removed from the subsurface by granulated activated carbon, methanol flushing as a means of removing toxaphene from soils, natural attenuation as a method for effectiveness of remediation metals and biodegrading acid-mine drainage constituents, and biodegradation ofradiologically contaminated soils. Also addressed in this book are current and future methods of assessing microbiological activity potential and diversity and of modeling biodegradation, contaminant flux, and gaseous transport in the subsurface.
The role of chance changed in the nineteenth century, and American literature changed with it. Long dismissed as a nominal concept, chance was increasingly treated as a natural force to be managed but never mastered. New theories of chance sparked religious and philosophical controversies while revolutionizing the sciences as probabilistic methods spread from mathematics, economics, and sociology to physics and evolutionary biology. Chance also became more visible in everyday life as Americans struggled to control its power through weather forecasting, insurance, game theory, statistics, military science, and financial strategy. Uncertain Chances shows how the rise of chance shaped the way nineteenth-century American writers faced questions of doubt and belief. Poe in his detective fiction critiques probabilistic methods. Melville in Moby-Dick and beyond struggles to vindicate moral action under conditions of chance. Douglass and other African American authors fight against statistical racism. Thoreau learns to appreciate the play between nature's randomness and order. Dickinson works faithfully to render poetically the affective experience of chance-surprise. These and other nineteenth-century writers dramatize the inescapable dangers and wonderful possibilities of chance. Their writings even help to navigate extremes that remain with us today-fundamentalism and relativism, determinism and chaos, terrorism and risk-management, the rational confidence of the Enlightenment and the debilitating doubts of modernity.
This volume comprises papers presented at the Third Isle of Thorns Conference on Finite Geometries and Designs. The papers explore the structure and associated incidence structures of Galois geometries, and their related automorphism groups. Among the main topics covered are generalized quadrangles and n-gons, groups acting on geometries, linear spaces, partial geometries, diagram geometries, non-Desarguesian planes, strongly regular graphs, and designs. This timely collection of articles is expertly presented and will be of interest to research workers and postgraduates in combinatorics, design theory, and finite geometries.
The central contention of this book is that second-order logic has a central role to play in laying the foundations of mathematics. In order to develop the argument fully, the author presents a detailed development of higher-order logic, including a comprehensive discussion of its semantics. Professor Shapiro demonstrates the prevalence of second-order notions in mathematics is practised, and also the extent to which mathematical concepts can be formulated in second-order languages . He shows how first-order languages are insufficient to codify many concepts in contemporary mathematics, and thus that higher-order logic is needed to fully reflect current mathematics. Throughout, the emphasis is on discussing the philosophical and historical issues associated with this subject, and the implications that they have for foundational studies. For the most part, the author assumes little more than a familiarity with logic as might be gained from a beginning graduate course which includes the incompleteness of arithmetic and the Lowenheim-Skolem theorems. All those concerned with the foundations of mathematics will find this a thought-provoking discussion of some of the central issues in this subject.
Quantum information- the subject- is a new and exciting area of
science, which brings together physics, information theory,
computer science and mathematics. Quantum Information- the book- is
based on two successful lecture courses given to advanced
undergraduate and beginning postgraduate students in physics. The
intention is to introduce readers at this level to the fundamental,
but offer rather simple, ideas behind ground-breaking developments
including quantum cryptography, teleportation and quantum
computing. The text is necessarily rather mathematical in style,
but the mathematics nowhere allowed priority over the key physical
ideas. My aim throughout was to be as complete and self- contained
but to avoid, as far as possible, lengthy and formal mathematical
proofs. Each of the eight chapters is followed by about forty
exercise problems with which the reader can test their
understanding and hone their skills. These will also provide a
valuable resource to tutors and lectures. |
![]() ![]() You may like...
The Look & Cook Air Fryer Bible - 125…
Bruce Weinstein, Mark Scarbrough
Paperback
|