![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > Tribology (friction & lubrication)
This book presents the proceedings of Fatigue Durability India 2016, which was held on September 28-30 at J N Tata Auditorium, Indian Institute of Science, Bangalore. This 2nd International Conference & Exhibition brought international industrial experts and academics together on a single platform to facilitate the exchange of ideas and advances in the field of fatigue, durability and fracture mechanics and its applications. This book comprises articles on a broad spectrum of topics from design, engineering, testing and computational evaluation of components and systems for fatigue, durability, and fracture mechanics. The topics covered include interdisciplinary discussions on working aspects related to materials testing, evaluation of damage, nondestructive testing (NDT), failure analysis, finite element modeling (FEM) analysis, fatigue and fracture, processing, performance, and reliability. The contents of this book will appeal not only to academic researchers, but also to design engineers, failure analysts, maintenance engineers, certification personnel, and R&D professionals involved in a wide variety of industries.
In this book, the history of the concepts critical to the discovery and development of aluminum, its alloys and the anodizing process are reviewed to provide a foundation for the challenges, achievements, and understanding of the complex relationship between the aluminum alloy and the reactions that occur during anodic oxidation. Empirical knowledge that has long sustained industrial anodizing is clarified by viewing the process as corrosion science, addressing each element of the anodizing circuit in terms of the Tafel Equation. This innovative approach enables a new level of understanding and engineering control for the mechanisms that occur as the oxide nucleates and grows, developing its characteristic highly ordered structure, which impact the practical function of the anodic aluminum oxide.
This textbook and comprehensive reference source and serves as a timely, practical introduction to the principles of nanotribology and nanomechanics. This 4th edition has been completely revised and updated, concentrating on the key measurement techniques, their applications, and theoretical modeling of interfaces. It provides condensed knowledge of the field from the mechanics and materials science perspectives to graduate students, research workers, and practicing engineers.
This book examines pedestrian shoe-floor slip resistance from an engineering standpoint in order to better understand friction and wear behavior. This analysis includes an extensive investigation into the surface properties of shoes and flow, and the measurement of dynamic friction and other mechanical and physical aspects of shoe-floor tribology. Lastly, the book proposes a measurement concept for the identification and classification of operational floor surfaces under a range of different conditions. Novel techniques and methods are proposed that can improve the reliability of slip resistance assessments. The current state of knowledge is critically examined and discussed from a tribological perspective, including aspects like friction, wear, lubrication and the mechanical behavior of shoes, floors and their wider environment. Further, the book reports on extensive experimental investigations into the topographical characteristics of shoe and floor surfaces and how they affect slip resistance. Slips resulting in pedestrian falls are a major cause of injuries and deaths for all age groups. This important book provides essential insights for researchers, practicing engineers and public safety officials wishing to learn about how the risk of pedestrian slips can be assessed and understood.
The second edition of this textbook includes refined text in each chapter, new sections on corrosion of steel-reinforced concrete and on cathodic protection of steel reinforced bars embedded in concrete, and some new solved examples. The book introduces mathematical and engineering approximation schemes for describing the thermodynamics and kinetics of electrochemical systems, which are the essence of corrosion science, in addition to electrochemical corrosion, forms of corrosion and mechanisms of corrosion. This approach should capture the reader's attention on the complexity of corrosion. Thus, the principles of electrochemistry and electrochemical cells are subsequently characterized in simple electrolytes from a thermodynamics point of view.
This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods.
This SpringerBrief discusses the determination and classification of the ambient temperature corrosion and stress corrosion properties of aerospace structural alloys, with emphasis on (1) aluminium alloys, modern (3rd generation) aluminium-lithium alloys, stainless steels and titanium alloys and (2) some of the issues involved. Standard /reference data on environmental properties, including corrosion and stress corrosion, are mandatory for the qualification and certification of materials for aerospace vehicles, and also for the design of actual structures and components. Recommendations for further testing and evaluation are given at appropriate points in the text. The book concludes with a summary of the main topics.
This book presents the physico-technical basis and current state of the technology of boronized layers. Special attention is given to the layer structure and morphology of allocated phases and distributions in a superficial zone of chemical compounds. Two- and multi-component phases of alloys and diffusion processes in a self-organizing mode are discussed. Surface hardening by boronizing increases the life time of mechanical tools. This is important for the mining industry, agriculture, textile and chemical industry. The book is important for thermochemical treatment and surface hardening of metals and alloys.
This thesis addresses selected unsolved problems in the chemical mechanical polishing process (CMP) for integrated circuits using ruthenium (Ru) as a novel barrier layer material. Pursuing a systematic approach to resolve the remaining critical issues in the CMP, it first investigates the tribocorrosion properties and the material removal mechanisms of copper (Cu) and Ru in KIO4-based slurry. The thesis subsequently studies Cu/Ru galvanic corrosion from a new micro and in-situ perspective, and on this basis, seeks ways to mitigate corrosion using different slurry additives. The findings presented here constitute a significant advance in fundamental and technical investigations into the CMP, while also laying the groundwork for future research.
Significantly extended from the first edition, this book presents the basics of microbiologically influenced corrosion (MIC) in an accessible and concise manner. It explores strategies for recognizing, understanding, mitigating and preventing this type of corrosion, and investigates this topic from the point of view of an engineer. Chapters cover issues including stress corrosion cracking and microbial corrosion, the pros and cons of biocides, the involvement of magnetic bacteria in microbial corrosion, and cathodic protection based on recent research in microbial environments. The 2nd Edition provides new material examining the following topics: *The corrosion-related bacteria clostridia *Mathematical modelling of MIC, in particular fuzzy logic *A comparison of culture-independent methods with culture-dependent methods *Further practical strategies for dealing with MIC *Natural biocidesThis book has provided course material for the author's microbial corrosion workshops around the world, and it presents an invaluable resource to corrosion and integrity professionals working in a wide range of industries including power generation, oil and gas, marine, and mining. It is also intended for students and academics of corrosion engineering, materials science, microbiology, chemical engineering and welding.
This brief is concerned with the fundamentals of corrosion of metallic materials and electrochemistry for better understanding of corrosion phenomena. Corrosion is related to both the environment and material properties, induced by electrochemical reactions at the interface between metallic materials and the environment as in aqueous and gaseous phases. In order to understand corrosion phenomena, knowledge of electrochemistry is thus required, and to investigate the cause of corrosion damage, appropriate electrochemical experiments must be performed. Corrosion scientists should therefore possess knowledge of both electrochemistry and its related experimental techniques. In this book, corrosion phenomena are introduced from the electrochemical aspect. Electrochemical techniques for the study of corrosion are then described with other techniques that can be combined with electrochemistry. Because this brief is characterized as starting with the fundamentals of corrosion and electrochemistry, it is accessible to undergraduate students as well as to graduate students who are beginning corrosion research.
This book reports on cutting-edge research and technologies in the field of advanced manufacturing and materials, with a special emphasis on unconventional machining process, rapid prototyping and biomaterials. Based on the International Conference on Manufacturing Engineering and Materials (ICMEM 2018), held in Novy Smokovec, Slovakia on 18-22 June 2018, it covers advances in various disciplines, which are expected to increase the industry's competitiveness with regard to sustainable development and preservation of the environment and natural resources. Condition monitoring, industrial automation, and diverse fabrication processes such as welding, casting and molding, as well as tribology and bioengineering, are just a few of the topics discussed in the book's wealth of authoritative contributions.
This monograph is a first-of-its-kind compilation on high deposition pulse current GMAW process. The nine chapters of this monograph may serve as a comprehensive knowledge tool to use advanced welding engineering in prospective applications. The contents of this book will prove useful to the shop floor welding engineer in handling this otherwise critical welding process with confidence. It will also serve to inspire researchers to think critically on more versatile applications of the unique nature of pulse current in GMAW process to develop cutting edge welding technology.
A handbook on syntheses and properties, production processes, and applications of maleic anhydride and maleic anhydride derived products - all in one text. This handbook provides a comprehensive overview of maleic anhydride chemistry and applications from the professional perspective. With chapters written by leading R&D scientists from the chemical industry, and edited by the Vice President and ASI Technology Chief at Ashland Specialty Ingredients (ASI), Dr. Osama M. Musa, readers will find a unique perspective and summary of the latest advancements in the field of maleic anhydride science. Maleic anhydride is produced industrially on large scale (10E3 kt/annum). Its rich chemistry makes it an important raw material for numerous products and processes (e.g. for applications in polymers and coatings), many of which are covered in this handbook for the first time in a comprehensive manner. The broad scope spans topics ranging from production techniques (including topics such as processes, catalysis, trouble-shooting), synthesis and properties of small and polymeric maleic anhydride based compounds (focusing on industrially relevant compounds as well as emerging areas of importance) and in-depth and broad discussions of commercial maleic anhydride based applications.
This book focuses on the use of nanotechnology in several fields of engineering. Among others, the reader will find valuable information as to how nanotechnology can aid in extending the life of component materials exposed to corrosive atmospheres, in thermal fluid energy conversion processes, anti-reflection coatings on photovoltaic cells to yield enhanced output from solar cells, in connection with friction and wear reduction in automobiles, and buoyancy suppression in free convective heat transfer. Moreover, this unique resource presents the latest research on nanoscale transport phenomena and concludes with a look at likely future trends.
This book provides an overview on current sustainable machining. Its chapters cover the concept in economic, social and environmental dimensions. It provides the reader with proper ways to handle several pollutants produced during the machining process. The book is useful on both undergraduate and postgraduate levels and it is of interest to all those working with manufacturing and machining technology.
This thesis presents a novel ultrasonic instrument for non-invasive and in-situ characterization of journal bearing lubricant viscosity. In particular, the application to journal bearings is described by non-invasively measuring the viscosity and localized power losses throughout operation. This ultrasonic viscometer is based on the reflection of polarized shear waves from a thin resonating coating layer to increase the measurement sensitivity, in comparison to conventional ultrasonic methods. This instrument allows for a full engine oil viscoelastic characterization in-situ. The book investigates the effects of temperature, pressure and shear rate, and describes in detail the ultrasonic setup and method. Further, it demonstrates that the same technique can be applied similarly to monitor the lubrication of other engine components. As such, it offers a unique instrument that can drive the research of oil formulations to improve engine performance and fulfill the requirements of international fuel economy regulations.
This book describes the history, origin and basic characteristics of bioactive materials. It includes a chapter dedicated to hydroxyapatite mineral, its formation and its bioactive properties. The authors address how cytotoxicity is a determining step for bioactivity. Applications of bioactive materials in the contexts of tissue regeneration, bone regeneration and cancer therapy are also covered. Silicate, metallic and mesoporous glasses are described, as well as the challenges and future prospects of research in this field.
Understanding the characteristics of material contact and lubrication at tribological interfaces is of great importance to engineering researchers and machine designers. Traditionally, contact and lubrication are separately studied due to technical difficulties, although they often coexist in reality and they are actually on the same physical ground. Fast research advancements in recent years have enabled the development and application of unified models and numerical approaches to simulate contact and lubrication, merging their studies into the domain of Interfacial Mechanics. This book provides updated information based on recent research progresses in related areas, which includes new concepts, theories, methods, and results for contact and lubrication problems involving elastic or inelastic materials, homogeneous or inhomogeneous contacting bodies, using stochastic or deterministic models for dealing with rough surfaces. It also contains unified models and numerical methods for mixed lubrication studies, analyses of interfacial frictional and thermal behaviors, as well as theories for studying the effects of multiple fields on interfacial characteristics. The book intends to reflect the recent trends of research by focusing on numerical simulation and problem solving techniques for practical interfaces of engineered surfaces and materials. This book is written primarily for graduate and senior undergraduate students, engineers, and researchers in the fields of tribology, lubrication, surface engineering, materials science and engineering, and mechanical engineering.
This book guides readers through the systematic analysis of Arc Spraying: one of the most widespread and important thermal spraying methods. Along the way, readers from industry and research laboratories become familiar with the features of the process and physical-chemical regulations of particles in flight, coating formation, internal coating properties, and their output parameters. The book is ideal for engineers, technicians, and scientists engaged in welding and thermal spraying and stands as an excellent reference for students interested in advanced coatings technology.
The purpose of this monograph is to characterize and describe the quality of machined wood surfaces, whereas particular attention is given to the utility and to aesthetical values in product design. The approach employed by the authors involves an introductory overview and is then organized in three parts: first, the book deals with factors influencing surface stability, the second part describes the color and gloss properties of wood surfaces with many practical applications, and the third part covers roughness properties of surfaces related to machining. This is a highly informative and carefully presented book, providing valuable insight for both research experts and practitioners with an interest in machined wood surfaces.
This book investigates the factors that lead to slip and fall incidents and establishes a relationship between the coefficient of friction (COF), floor slipperiness and floor roughness. It also examines human perception of slipperiness through measured coefficient of friction (COF). On the basis of questionnaire surveys among manufacturing workers, it identifies potential risk factors and assesses human perceptions of slipperiness. It also uses a tribology approach to relate the interaction between contaminants, floor and footwear materials.
This book summarizes the theoretical and experimental studies confirming the concept of the liquid-crystalline nature of boundary lubrication in synovial joints. It is shown that cholesteric liquid crystals in the synovial liquid play a significant role in the mechanism of intra-articular friction reduction. The results of structural, rheological and tribological research of the creation of artificial synovial liquids containing cholesteric liquid crystals in natural synovial liquids are described. These liquid crystals reproduce the lubrication properties of natural synovia and provide a high chondroprotective efficiency. They were tested in osteoarthritis models and in clinical practice.
Tribology embraces the process of friction, lubrication, and wear in mechanical equipment. It finds particular application for reducing the consumption of energy and fuel, and for increasing the reliability and service life of machinery. As hard-won experience is built up, the principles of good design are increasingly clarified and become available for wider use. There can be few examples for which this cycle of learning and feedback is more economically valuable than the refinement of the internal combustion engine - the prime mover of today's highly mobile economy. Based on papers presented at an IMechE seminar, "Tribology of Internal Combustion Engines" should be read by all those working in the fields of tribology and automotive engine technology. Topics covered include: -Vehicle environmental legislation: past, present, and future- Recent developments in piston assemblies- Cylinder bore surface finish - its evolution and specification- The development of high - stream aluminium tin silicon copper bearing alloys for automotive applicationsDevelopments in camshaft and follower technologyRing zone lubrication: implications for reduced emissions and enhanced engine lifeAutomotive lubricants: today's choices, tomorrow's possibilitiesThe Jaguar AJ-V8 engine
This book presents the principles of plasma and heat spraying. It introduces plasma jet and the formation of plasma sprayed coatings. It explains the adhesion process and also presents standard methods for measurement according to DIN forms. Some case studies are presented for illustration. |
![]() ![]() You may like...
Radar Propagation and Scattering in a…
Christophe Bourlier
Hardcover
|