![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > Tribology (friction & lubrication)
This Brief describes the influence of the different organic chelating agents on the topography, physical properties and phases of SPPS-deposited spinel ferrite splats. The author describes how by using the SPPS process, the coating is produced directly from a solution precursor and how all physical and chemical reactions such as evaporation, decomposition, crystallization and coating formation occur in a single step. The author details not only the innovative approach to liquid feeding, but also focuses on its effects on the spinel ferrite system. The results of experimentation as well as detailed explanations of the experiments are included.
This book presents resent research advances in the area of eco-triobology. In the last years, eco-tribology or environmentally friendly tribology has gained increasing importance in sustainable engineering. Environmentally acceptable tribological practices save resources by optimizing product usage and reducing energy. This book covers current developments in all areas covered by the term eco-tribology, including biomimetics surfaces, control of friction and wear, environmental aspects of lubrication and surface modification techniques as well as tribological aspects of green applications, such wind-power turbines or solar panels.
This book addresses the background and significance of the factors potentially influencing the clinical and biological outcomes of metal-on-metal hip implants. Metal-on-metal bearings were introduced and evaluated as an alternative to other bearing couples, particularly metal-on-polyethylene, due to their enhanced wear resistance as determined in laboratory testing. Initially, reports of short-term clinical outcomes were favorable and an increasing number of metal-on-metal prostheses were implanted. Subsequently, isolated case findings describing adverse tissue responses around the articulation became the harbinger of an increasing number of reports describing pseudotumors and other significant lymphocytic-based responses associated with metal-on-metal prostheses. Questions have been raised as to whether this is an implant, design, or patient-specific response. The reasons why some patients have a negative biological response and pathology while others do not remain to be determined, but tens of thousands of patients in the US, the UK, and around the world are considered to be at risk. Leading researchers and clinicians describe the issues related to the nature of the biological and pathological responses and the protocols that should be followed to determine if an adverse response is occurring. This book is essential reading for researchers, engineers, and orthopaedic surgeons who are involved in the design, evaluation, and implantation of metal-on-metal prostheses.
Comprehensive treatise on gas bearing theory, design and application This book treats the fundamental aspects of gas bearings of different configurations (thrust, radial, circular, conical) and operating principles (externally pressurized, self-acting, hybrid, squeeze), guiding the reader throughout the design process from theoretical modelling, design parameters, numerical formulation, through experimental characterisation and practical design and fabrication. The book devotes a substantial part to the dynamic stability issues (pneumatic hammering, sub-synchronous whirling, active dynamic compensation and control), treating them comprehensively from theoretical and experimental points of view. Key features: Systematic and thorough treatment of the topic. Summarizes relevant previous knowledge with extensive references. Includes numerical modelling and solutions useful for practical application. Thorough treatment of the gas-film dynamics problem including active control. Discusses high-speed bearings and applications. Air Bearings: Theory, Design and Applications is a useful reference for academics, researchers, instructors, and design engineers. The contents will help readers to formulate a gas-bearing problem correctly, set up the basic equations, solve them establishing the static and dynamic characteristics, utilise these to examine the scope of the design space of a given problem, and evaluate practical issues, be they in design, construction or testing.
This book brings together recent developments in the areas of MEMS tribology, novel lubricants and coatings for nanotechnological applications, biomimetics in tribology and fundamentals of micro/nano-tribology. Tribology plays important roles in the functioning and durability of machines at small length scales because of the problems associated with strong surface adhesion, friction, wear etc. Recently, a number of studies have been conducted to understand tribological phenomena at nano/micro scales and many new tribological solutions for MEMS have been proposed.
This brief details non-circular journal bearing configurations. The author describes the mathematical and experimental studies that pertain to non-circular journal bearing profiles and how they can be applied to other types of bearing profiles with some modifications. He also examines non-circular journal bearing classifications, the methodology needed to carry out mathematical modeling, and the experimental procedures used to determine oil-film temperature and pressures.
Nontraditional machining employs processes that remove material by various methods involving thermal, electrical, chemical and mechanical energy or even combinations of these. Nontraditional Machining Processes covers recent research and development in techniques and processes which focus on achieving high accuracies and good surface finishes, parts machined without burrs or residual stresses especially with materials that cannot be machined by conventional methods. With applications to the automotive, aircraft and mould and die industries, Nontraditional Machining Processes explores different aspects and processes through dedicated chapters. The seven chapters explore recent research into a range of topics including laser assisted manufacturing, abrasive water jet milling and hybrid processes. Students and researchers will find the practical examples and new processes useful for both reference and for developing further processes. Industry professionals and materials engineers will also find Nontraditional Machining Processes to be a source of ideas and processes for development and industrial application.
Surface Engineering constitutes a variety of processes and sub processes. Each chapter of this work covers specific processes by experts working in the area. Included for each topic are tribological performances for each process as well as results of recent research. The reader also will benefit from in-depth studies of diffusion coatings, nanocomposite films for wear resistance, surfaces for biotribological applications, thin-film wear, tribology of thermal sprayed coatings, hardfacing, plating for tribology and high energy beam surface modifications. Material scientists as well as engineers working with surface engineering for tribology will be particularly interested in this work.
The modern vision of the micromechanism of friction and wear is explored, from the examination of ideal and real crystal structure and adhesion properties to the dynamics of solid frictional interaction. The fundamental quantum-mechanical and relativity principles of particle interaction are considered as basis of friction micro-process examination. The changes in solid structure originated from the influence of different kinds of force fields are considered. The principal possibility of relativity effect manifestation by friction is explained. The critical state of friction - triboplasma - was studied. Structural peculiarities of triboplasma, the kinetics of its transformation during frictional interaction as well as the influence of plasma and postplasma processes on tribojunction friction characteristics and complex formation by friction were examined. The book addresses to tribology researchers.
This book presents co-sputtered processes ways to produce chrome doped TiO2 thin films onto various substrates such as quartz, silicon and porous silicon. Emphasis is given on the link between the experimental preparation and physical characterization in terms of Cr content. Moreover, the structural, optical and optoelectronic investigations are emphasized throughout. The book explores the potencial applications of devices based on Cr doped TiO2 thin films as gas sensors and in photocatalysis and in the photovoltaic industry. Also, this book provides extensive leads into research literature, and each chapter contains details which aim to develop awareness of the subject and the methods used. The content presented here will be useful for graduate students as well as researchers in materials science, physics, chemistry and engineering.
The book gives an overview of environmental friendly gaseous and vapour, refrigerated compressed gas, solid lubricant, mist lubrication, minimum quantity lubrication (MQL) and vegetable oils that can be used as lubricants and additives in industrial machining applications. This book introduces vegetable oils as viable and good alternative resources because of their environmental friendly, non-toxic and readily biodegradable nature. The effectiveness of various types of vegetables oils as lubricants and additives in reducing wear and friction is discussed in this book. Engineers and scientist working in the field of lubrication and machining will find this book useful.
People seldom enjoy corrosion. They usually perceive it as a nasty phenomenon with which they must cope. Yet many people, far from the corrosion field, come across it because of their professional duty. Lawyers, historians, doctors, architects, philosophers, artists, and archeologists, to name a few, may want or need to understand the principles of corrosion. This volume explains this important topic in a lucid, interesting, and popular form to everybody: to students and young engineers who are only beginning their studies, to scientists and engineers who have dealt with corrosion for many years, and to non-specialists involved in corrosion problems. The book uses a fresh writing style, with some new explanations relating to thermodynamics of oxidation of iron and mild steels in water, reversible and irreversible potential, solubility of oxygen in water and aqueous solutions of electrolytes, corrosion of metals in fuels, corrosion of storage tanks for fuels and their corrosion control, corrosion monitoring in practice, humanitarian aspects of corrosion science and technology (history of the evolution of knowledge about corrosion, relationships between corrosion and philosophy, corrosion and art). Many practical examples of various corrosion phenomena are given.
Uranium Processing and Properties describes developments in uranium science, engineering and processing and covers a broad spectrum of topics and applications in which these technologies are harnessed. This book offers the most up-to-date knowledge on emerging nuclear technologies and applications while also covering new and established practices for working with uranium supplies. The book also aims to provide insights into current research and processing technology developments in order to stimulate and motivate innovation among readers. Topics covered include casting technology, plate and sheet rolling, machining of uranium and uranium alloys, forming and fabrication techniques, corrosion kinetics, nondestructive evaluation and thermal modeling.
Size effect in structures has been taken into consideration over the last years. In comparison with coatings with micrometer-ranged thickness, nanostructured coatings usually enjoy better and appropriate properties, such as strength and resistance. These coatings enjoy unique magnetic properties and are used with the aim of producing surfaces resistant against erosion, lubricant system, cutting tools, manufacturing hardened sporadic alloys, being resistant against oxidation and corrosion. This book reviews researches on fabrication and classification of nanostructured coatings with focus on size effect in nanometric scale. Size effect on electrochemical, mechanical and physical properties of nanocoatings are presented.
This book provides recent information on nanocomposites tribology. Chapter 1 provides information on tribology of bulk polymer nanocomposites and nanocomposite coatings. Chapter 2 is dedicated to nano and micro PTFE for surface lubrication of carbon fabric reinforced polyethersulphone composites. Chapter 3 describes Tribology of MoS2 -based nanocomposites. Chapter 4 contains information on friction and wear of Al2O2 -based composites with dispersed and agglomerated nanoparticles. Finally, chapter 5 is dedicated to wear of multi-scale phase reinforced composites. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels.
This book aims to show how tribological concepts can be applied in order to improve manufacturing technology in modern industry. It can be used as a guide book for engineering students or a reference useful for academics in the fields of tribology, manufacturing, materials and mechanical engineering.
This volume presents chemical vapour deposition of diamond films for application in cutting tools, microdrills, dental burs and surgical tools. It examines various deposition techniques, discusses mechanisms of diamond growth and their impact on cutting tool life and performance.
The book offers a snapshot of the state-of-art in the field of model-based mechatronic system design. It covers topics including machine design and optimization, predictive systems in manufacturing networks, and the development of software for modeling and simulation of processes, which are supplemented by practical case studies. The book is a collection of fifteen selected contributions presented during the Workshop on Mechatronic Systems, held on March 17-19, 2014, in Mahdia, Tunisia. The workshop was jointly organized by the Laboratory of Mechanics Modeling and Production (LA2MP) of the National School of Engineers Sfax, Tunisia, and the Laboratory for Mechanical Systems and Materials Engineering (LISMMA) of Higher Institute of Mechanics (SUPMECA), Paris, France.
Erosive wear is characterized by successive loss of material from the surface due to the continuous impact of solid particles. This type of wear affects numerous industries, such as power generation, mining, and the pneumatic transportation of solids. The worst case scenario normally occurs where there is a combination of both erosion and oxidation, especially at high temperatures. In order to minimize damage caused by erosive wear, many authors propose the use of better bulk materials or surface coatings, and generally cermets are suggested. Various researchers have conducted experiments to study the wear mechanisms occurring in this kind of materials, but most of these experiments do not lead to similar results; in fact, there is no accordance among the authors, and moreover, some wear variables are ignored. In this book, studies undertaken in this field by several investigators have been discussed extensively. At the end of it, table reviews are suggested to summarize the most important mechanisms of the erosive wear in bulk and coating cermets.
"Biomimetics in Materials Science" provides a comprehensive theoretical and practical review of biomimetic materials with self-healing, self-lubricating and self-cleaning properties. These three topics are closely related and constitute rapidly developing areas of study. The field of self-healing materials requires a new conceptual understanding of this biomimetic technology, which is in contrast to traditional engineering processes such as wear and fatigue. "Biomimetics in Materials Science" is the first monograph to be devoted to these materials. A new theoretical framework for these processes is presented based on the concept of multi-scale structure of entropy and non-equilibrium thermodynamics, together with a detailed review of the available technology. The latter includes experimental, modeling, and simulation results obtained on self-healing/lubricating/cleaning materials since their emergence in the past decade."
The clamor for non-carbon dioxide emitting energy production has directly impacted on the development of nuclear energy. As new nuclear plants are built, plans and designs are continually being developed to manage the range of challenging requirement and problems that nuclear plants face especially when managing the greatly increased operating temperatures, irradiation doses and extended design life spans. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments provides a comprehensive treatment of the structural materials for nuclear power plants with emphasis on advanced design concepts. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments approaches structural materials with a systemic approach. Important components and materials currently in use as well as those which can be considered in future designs are detailed, whilst the damage mechanisms responsible for plant ageing are discussed and explained. Methodologies for materials characterization, materials modeling and advanced materials testing will be described including design code considerations and non-destructive evaluation concepts. Including models for simple system dynamic problems and knowledge of current nuclear power plants in operation, Materials for Nuclear Plants: From Safe Design to Residual Life Assessments is ideal for students studying postgraduate courses in Nuclear Engineering. Designers on courses for code development, such as ASME or ISO and nuclear authorities will also find this a useful reference.
"Chemistry and Technology of Lubricants" describes the chemistry and technology of base oils, additives and applications of liquid lubricants. This Third Edition reflects how the chemistry and technology of lubricants has developed since the First Edition was published in 1992. The acceleration of performance development in the past 35 years has been as significant as in the previous century: Refinery processes have become more precise in defining the physical and chemical properties of higher quality mineral base oils. New and existing additives have improved performance through enhanced understanding of their action. Specification and testing of lubricants has become more focused and rigorous. "Chemistry and Technology of Lubricants" is directed principally at those working in the lubricants industry as well as individuals working within academia seeking a chemist's viewpoint of lubrication. It is also of value to engineers and technologists requiring a more fundamental understanding of the subject.
This book is devoted to the sndy of some clifferentia.l inclusions motivated by Mechanics and of existcnce rcsults for the dynamics of systems with inelastic shocks, with or without friction. This ensures a certain unity of subject, techniques and applications, at the price of not including some earlier works Mon 1-4] . In the introductory Chapter 0, sevcral essentia.l mathematical tools (either recent or recently rediscoven d) are presented. l\1ainly they concern functions of bouncled variation defincd in real interva.ls ( deriva.tion of Stieltjcs measures, compactness results. convergencrc in tlw sense of graphs) a.ncl geometrical inequa.lities. In Chapters 1 and 2, Ivforea.u' s swecpiug process is considcred; this is a first-order differential inclusion (1) where the right-ha.nd siele is tla: ' outw
This and volume no. 47of "Modern Aspects of Electrochemistry" is composed of eight chapters covering topics having relevance both in corrosion science and materials engineering. In particular, the first seven chapters provide comprehensive coverage of recent advances in corrosion science."
This volume presents treat the material science and mechanical issues of hybrid adhesive bonds which are a combination of adhesive bonding rather than mechanical fasteners. The idea of hybrid joints is to gather the advantages of the different techniques leaving out their problems. Some of the advantages of these joints are a higher static and fatigue strength and a higher stiffness with respect to simple joints, a two-stage cracking process before the final failure and improved durability. The book treats all important kinds of joints which are in use today: weld - adhesive, rivet - adhesive, clinch - adhesive, bolt - adhesive, and adhesive - adhesive. A section dedicated to threadlocking and interference-fit adhesive joints is also included. All sections are treated from a scientific point of view with modeling issues supported by simple coupons testing and a technological point of view where the idea is to present more applied results with practical cases. |
![]() ![]() You may like...
|