![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > Tribology (friction & lubrication)
Provides comprehensive information on the tribological aspects of advanced ceramic materials for all uses that require controlled friction and wear resistance. The text is a guide to altering the microstructure of ceramics to create optimum performance in sliding and rolling contact applications.
Since January 1990, when the first edition ofthis first-of-a-kind book appeared, there has been much experimental and theoretical progress in the multi disciplinary subject of tribology and mechanics of magnetic storage devices. The subject has matured into a rigorous discipline, and many university tribology and mechanics courses now routinely contain material on magnetic storage devices. The major growth in the subject has been on the micro- and nanoscale aspects of tribology and mechanics. Today, most large magnetic storage industries use atomic force microscopes to image the magnetic storage components. Many companies use variations of AFMs such as friction force microscopes (FFMs) for frictional studies. These instruments have also been used for studying scratch, wear, and indentation. These studies are valuable in the fundamental understanding of interfacial phenomena. In the second edition, I have added a new chapter, Chapter 11, on micro and nanoscale aspects of tribology and mechanics of magnetic storage compo nents. This chapter presents the state of the art of the micro/nanotribology and micro/nanomechanics of magnetic storage components. In addition, typographical errors in Chapters 1 to 10 and the appendixes have been corrected. These additions update this book and make it more valuable to researchers of the subject. I am grateful to many colleagues and particularly to my students, whose work is reported in Chapter 11. I thank my wife, Sudha, who has been forbearing during the progress of the research reported in this chapter.
This book first introduces polymers and polymer composites which are widely used in different industrial and engineering applications where the proper selection of fiber, filler, and polymer can be tailored for particular application. The primary objective of this book is to broaden the knowledge of tribology of polymer composites in a new dimension for Industry 4.0. For instance, the book covers polymer composites used as self-lubricating material used in the automotive industry and other manufacturing equipment to reduce the effect of energy loss due to friction and wear. This book is of interest to researchers and industrial practitioners who work in the field of tribology of polymer composites, manufacturing equipment and production engineering.
Micro Electro Mechanical Systems (MEMS) is already about a billion dollars a year industry and is growing rapidly. So far major emphasis has been placed on the fabrication processes for various devices. There are serious issues related to tribology, mechanics, surfacechemistry and materials science in the operationand manufacturingof many MEMS devices and these issues are preventing an even faster commercialization. Very little is understood about tribology and mechanical properties on micro- to nanoscales of the materials used in the construction of MEMS devices. The MEMS community needs to be exposed to the state-of-the-artoftribology and vice versa. Fundamental understanding of friction/stiction, wear and the role of surface contamination and environmental debris in micro devices is required. There are significantadhesion, friction and wear issues in manufacturing and actual use, facing the MEMS industry. Very little is understood about the tribology of bulk silicon and polysilicon films used in the construction ofthese microdevices. These issues are based on surface phenomenaand cannotbe scaled down linearly and these become increasingly important with the small size of the devices. Continuum theory breaks down in the analyses, e. g. in fluid flow of micro-scale devices. Mechanical properties ofpolysilicon and other films are not well characterized. Roughness optimization can help in tribological improvements. Monolayers of lubricants and other materials need to be developed for ultra-low friction and near zero wear. Hard coatings and ion implantation techniques hold promise.
This thesis presents a novel ultrasonic instrument for non-invasive and in-situ characterization of journal bearing lubricant viscosity. In particular, the application to journal bearings is described by non-invasively measuring the viscosity and localized power losses throughout operation. This ultrasonic viscometer is based on the reflection of polarized shear waves from a thin resonating coating layer to increase the measurement sensitivity, in comparison to conventional ultrasonic methods. This instrument allows for a full engine oil viscoelastic characterization in-situ. The book investigates the effects of temperature, pressure and shear rate, and describes in detail the ultrasonic setup and method. Further, it demonstrates that the same technique can be applied similarly to monitor the lubrication of other engine components. As such, it offers a unique instrument that can drive the research of oil formulations to improve engine performance and fulfill the requirements of international fuel economy regulations.
Highlights the utilization of nanofillers. Investigates the moisture absorption and ageing on the physio-chemical, mechanical, thermal properties of the vinyl ester-based composites. Considers the influence of hybridization, fibre architecture, and fibre-ply orientation on the mechanical and thermal properties of vinyl ester-based biocomposites. Discusses the effects of the alkali treatment. Chapters are written by global experts to cover a diverse scope of industry applications for fibre-reinforced polymer composites.
Highlights the performance of epoxy-based biocomposites with reinforced with various natural fibres and plant resources. Investigates the behavior of hybrid biocomposites and biocomposites reinforced with various nanofillers. Evaluates the response of epoxy-based biocomposites exposed to moisture absorption, accelerated weathering, and hygrothermal aging. Discusses the static and dynamic properties, such as creep, fatigue, and free vibration properties. Chapters are written by global experts to cover a diverse scope of industry applications for fiber-reinforced polymer composites.
1) Aids professionals in meeting an increasing demand for more sustainable materials which are biodegradable, as nanomaterials meet these criteria 2) Monitors the impact of organic nanofillers in promoting polymer circular economy 3) Discusses computational studies on the effect of nanofillers on polymer matrices 4) Looks at properties of nanofillers including the mechanical, thermal, electrical, optical, and magnetic properties
1) Aids professionals in meeting an increasing demand for more cost effective materials that still provide high performance 2) Monitors the impact of inorganic nanofillers in promoting polymer circular economy 3) Discusses metallic foams and high entropy inorganic nanofillers 4) Features cutting edge research on nanocomposite derived anisotropy hydrogels and their multifunctional applications, with emphasis on wound dressing properties.
This handbook provides an insight into the advancements in surface engineering methods, addressing the microstructural features, properties, mechanisms of surface degradation failures, and tribological performance of the components. Emphasis is on laser cladding methods because by using laser cladding a new class of materials like nano-composites, nano-tubes, and smart materials can be easily deposited. Handbook of Laser-Based Sustainable Surface Modification and Manufacturing Techniques discusses the main mechanism behind the surface degradation of structural components in strenuous environments. It highlights the capacity of laser cladding to operate on a wide range of substrate materials and shapes as well as presents how laser cladding can offer new possibilities in the reconditioning of components and how in many cases, these approaches are the only solution for economical efficiency. The handbook illustrates how if the type of power of the laser, laser optics, and the parameters of the process are efficiently selected, the number of applications of laser cladding can be large. The standard methods of testing used for various types of biomedical devices and tools, as well as the advantages of combining laser cladding with simultaneous induction heating, are described as well within this handbook. Features: Discusses the main mechanism behind the surface degradation of structural components in strenuous environments Highlights the capacity of laser cladding needed to operate on a wide range of substrate materials and shapes Presents how laser cladding can offer new possibilities in the reconditioning of components and how in many cases, these approaches are the only possible solution and are economically efficient Illustrates how if the type and power of the laser, laser optics, and the parameters of the process are efficiently selected, the number of applications of laser cladding can be large Offers the standard methods of testing used for various types of biomedical devices and tools Goes over the advantages of combining laser cladding with simultaneous induction heating The technical outcomes of these surface engineering methods are helpful for academics, students, and professionals who are working in this field as this enlightens their understanding of the performance of these latest processes. The audience is broad and multidisciplinary.
This book presents resent research advances in the area of eco-triobology. In the last years, eco-tribology or environmentally friendly tribology has gained increasing importance in sustainable engineering. Environmentally acceptable tribological practices save resources by optimizing product usage and reducing energy. This book covers current developments in all areas covered by the term eco-tribology, including biomimetics surfaces, control of friction and wear, environmental aspects of lubrication and surface modification techniques as well as tribological aspects of green applications, such wind-power turbines or solar panels.
This book presents the findings of research projects from the Transregional Collaborative Research Centre 73. These proceedings are the result of years of research into sheet-bulk metal forming. The book discusses the challenges posed by simulating sheet-bulk metal forming. It takes into account the different phenomena characteristic to both sheet and bulk forming fields, and explores the demands this makes on modelling the processes. It then summarizes the research, and presents from a practitioner's point of view. This means the book is of interest to and helps both academics and industrial engineers within the field of sheet-bulk metal forming.
This book offers a comprehensive review of the various options for improving the performance of overhead power lines in winter conditions, taking into account both mechanical and electrical aspects. Experience within the CIGRE community reveals many strategies to protect overhead power lines from damage caused by heavy build-up of ice and snow or electrical issues such as insulator icing flashovers. The initial approach is to consider the predicted ice loads from the available databases. This is supplemented with some fundamental aspects of icing physics that affect accretion rate as well as factors in ice shedding on traditional (metal, ceramic) and novel treated surfaces. These ice physics concepts structure the ways to categorize and evaluate methods to reduce or prevent icing on conductors and ground wires or to prevent flashover of insulators. Many utilities in cold climate regions have developed and used methods and strategies to reduce ice loads using anti-icing (AI) and / or de-icing (DI) methods. In general, AI methods are used before or early during ice build-up, while DI methods are activated during and sometimes after ice build-up. The book describes and discusses some historical, operational, or potential AI / DI systems in the ice physics context. This supports a comprehensive review of AI coatings including concepts, relevant material properties, application methods, and finally test methods for characterizing the long-term performance.
Tribology is a multidisciplinary science that encompasses mechanical engineering, materials science, surface engineering, lubricants, and additives chemistry with tremendous applications. Tribology and Surface Engineering for Industrial Applications discusses the latest in tribology and surface engineering for industrial applications. This book: Offers information on coatings and surface diagnostics Explains a variety of techniques for improved performance Describes applications in automotive, wheel and rail materials, manufacturing, and wind turbines Written for researchers and advanced students, this book encompasses a wide-ranging view of the latest in industrial applications of tribology and surface engineering for a variety of cross-disciplinary applications.
This book explains how to improve the validity, reliability, and repeatability of slip resistance assessments amongst a range of shoes, floors, and environments from an engineering metrology viewpoint-covering theoretical and experimental aspects of slip resistance mechanics and mechanisms. Pedestrian falls resulting from slips or falls are one of the foremost causes of fatal and non-fatal injuries that limit people's functionality. There have been prolonged efforts globally to identify and understand their main causes and reduce their frequency and severity. This book deals with large volumes of information on tribological characteristics such as friction and wear behaviours of the shoes and floors and their interactive impacts on slip resistance performances. Readers are introduced to theoretical concepts and models and collected evidence on slip resistance properties amongst a range of shoe and floor types and materials under various ambulatory settings. These approaches can be used to develop secure design strategies against fall incidents and provide a great step forward to build safer shoes, floors, and walking/working environments for industries and communities around the world. The book includes many case studies.
Transient friction effects determine the behavior of a wide class of mechatronic systems. Classic examples are squealing brakes, stiction in robotic arms, or stick-slip in linear drives. To properly design and understand mechatronic systems of this type, good quantitative models of transient friction effects are of primary interest. The theory developed in this book approaches this problem bottom-up, by deriving the behavior of macroscopic friction surfaces from the microscopic surface physics. The model is based on two assumptions: First, rough surfaces are inherently fractal, exhibiting roughness on a wide range of scales. Second, transient friction effects are caused by creep enlargement of the real area of contact between two bodies. This work demonstrates the results of extensive Finite Element analyses of the creep behavior of surface asperities, and proposes a generalized multi-scale area iteration for calculating the time-dependent real contact between two bodies. The toolset is then demonstrated both for the reproduction of a variety of experimental results on transient friction as well as for system simulations of two example systems.
With the advent of nanotechnology, the properties offered by nano-sized particles in various engineering applications have revolutionized the area of material science. Further, due to the use of nanomaterials in various engineering components particularly moving parts, it is imperative to understand the behavior of these nanomaterials under sliding conditions. Therefore, an augmented approach of nanotechnology and tribology has been addressed in the book. It presents recent advancements on the topics related to Mechanical and tribological behaviour of nanocomposites, Nanomaterials in lubricating oils, Synergetic effects of nanomaterials, Surface texturing at nano-scale, Nanocoatings for various applications, Biotribological applications of nanomaterials Nanomaterials for Sustainable Tribology cover major aspects of tribology of nanomaterials, its current status and future directions. This book will provide the readers an insight on several aspects of tribology of nanomaterials. The book will act as a strong stimulant for readers to appreciate and initiate further advancements in the field of tribology, particularly at nano-scale.
Fundamentals of Friction, unlike many books on tribology, is devoted to one specific topic: friction. After introductory chapters on scientific and engineering perspectives, the next section contains the necessary background within the areas of contact mechanics, surfaces and adhesion. Then on to fracture, deformation and interface shear, from the macroscopic behavior of materials in frictional contact to microscopic models of uniform and granular interfaces. Lubrication by solids, liquids and gases is presented next, from classical flow properties to the reorganization of monolayers of molecules under normal and shear stresses. A section on new approaches at the nano- and atomic scales covers the physics and chemistry of interfaces, an array of visually exciting simulations, using molecular dynamics, of solids and liquids in sliding contact, and related AFM/STM studies. Following a section on machines and measurements, the final chapter discusses future issues in friction.
In this book, the history of the concepts critical to the discovery and development of aluminum, its alloys and the anodizing process are reviewed to provide a foundation for the challenges, achievements, and understanding of the complex relationship between the aluminum alloy and the reactions that occur during anodic oxidation. Empirical knowledge that has long sustained industrial anodizing is clarified by viewing the process as corrosion science, addressing each element of the anodizing circuit in terms of the Tafel Equation. This innovative approach enables a new level of understanding and engineering control for the mechanisms that occur as the oxide nucleates and grows, developing its characteristic highly ordered structure, which impact the practical function of the anodic aluminum oxide.
This book is focuses on novel materials for advanced engine design. It includes the study of friction, wear, lubrication, suitable lubricant additives, and durability of different engine components of alcohol/biodiesel fueled engines. The contents highlight different lubrication systems to overcome friction and wear problems of automotive transportation systems. It also discusses different materials for future applications, wear of wheels and axels of locomotives, friction-induced noise and vibration and tribological behavior of texture surfaces in the automotive transport sector. This book will be of interest to those in academia and industry involved in alternative fuels application in IC engines, friction and wear study of various engine components, lubrication approaches and different additives of lubricants, and novel materials for advanced engine design.
This text discusses recent research techniques in the field of microwave processing of engineering materials by utilizing microwave radiation in the form of microwave hybrid heating (MHH). It is useful for industrial and household applications including the joining of materials, casting of bulk metal alloy material, drilling of borosilicate glass materials, development of cladding of different materials for friction, wear, and corrosion. The book: Discusses the development of high-temperature resistant materials using microwave processing Covers the latest research development in microwave processing in the field of healthcare i.e. bio-medical implants Highlights concepts of microwave heating in joining, cladding, and casting of metallic materials Explains mechanisms of failure of materials and protection in a comprehensive manner Provide readers the knowledge of microwave processing of materials in major thrust areas of engineering applications This book extensively highlights the latest advances in the field of microwave processing for engineering materials. It will serve as an ideal reference text for graduate students and academic researchers in the fields of materials science, manufacturing engineering, industrial engineering, mechanical engineering, and production engineering.
This book presents the proceedings of Fatigue Durability India 2016, which was held on September 28-30 at J N Tata Auditorium, Indian Institute of Science, Bangalore. This 2nd International Conference & Exhibition brought international industrial experts and academics together on a single platform to facilitate the exchange of ideas and advances in the field of fatigue, durability and fracture mechanics and its applications. This book comprises articles on a broad spectrum of topics from design, engineering, testing and computational evaluation of components and systems for fatigue, durability, and fracture mechanics. The topics covered include interdisciplinary discussions on working aspects related to materials testing, evaluation of damage, nondestructive testing (NDT), failure analysis, finite element modeling (FEM) analysis, fatigue and fracture, processing, performance, and reliability. The contents of this book will appeal not only to academic researchers, but also to design engineers, failure analysts, maintenance engineers, certification personnel, and R&D professionals involved in a wide variety of industries.
The global lubricants market exceeds $110 billion, with strong future-estimated annual growth projections. While much has been written about the technical aspects of lubricant development, Lubricant Marketing, Selling, and Key Account Management fills a need for a comprehensive guide on the important commercial aspects of the business, offering unique and valuable insights from a veteran of the industry. It answers questions and offers insights on how to effectively market and sell all types of lubricants, including automotive, industrial, mining, marine, agricultural and aerospace, among others. Covers how and why people and companies buy lubricants. Instructs readers how to research and analyze markets and use the results to plan marketing and sales campaigns and activities. Details how to identify specific target market segments and sell to key lubricant accounts. Discusses how to forecast future demand for lubricants in all types of global markets. This practical book is written for technical and non-technical readers involved in the sale and management of lubricant products and offers hands-on guidance for how to successfully navigate and grow your profitability in this vitally important product sector. |
![]() ![]() You may like...
Nanoscale Materials for Warfare Agent…
Carla Bittencourt, Chris Ewels, …
Paperback
R3,020
Discovery Miles 30 200
|