![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > Tribology (friction & lubrication)
This book introduces an innovative and high-efficiency technology for mechanical energy harvesting. The book covers the history and development of triboelectric nanogenerators, basic structures, working principles, performance characterization, and potential applications. It is divided into three parts: Part A illustrates the fundamental working modes of triboelectric nanogenerators with their prototype structures and theoretical analysis; Part B and Part C introduce two categories of applications, namely self-powered systems and self-powered active sensors. The book will be an ideal guide to scientists and engineers beginning to study triboelectric nanogenerators or wishing to deepen their knowledge of the field. Readers will be able to place the technical details about this technology in context, and acquire the necessary skills to reproduce the experimental setups for fabrication and measurement.
"Chemistry and Technology of Lubricants" describes the chemistry and technology of base oils, additives and applications of liquid lubricants. This Third Edition reflects how the chemistry and technology of lubricants has developed since the First Edition was published in 1992. The acceleration of performance development in the past 35 years has been as significant as in the previous century: Refinery processes have become more precise in defining the physical and chemical properties of higher quality mineral base oils. New and existing additives have improved performance through enhanced understanding of their action. Specification and testing of lubricants has become more focused and rigorous. "Chemistry and Technology of Lubricants" is directed principally at those working in the lubricants industry as well as individuals working within academia seeking a chemist's viewpoint of lubrication. It is also of value to engineers and technologists requiring a more fundamental understanding of the subject.
Polyester-Based Biocomposites highlights the performance of polyester-based biocomposites reinforced with various natural fibres extracted from leaf, stem, fruit bunch, grass, wood material. It also addresses the characteristics of polyester-based biocomposites reinforced with rice husk fillers and various nanoparticles. The book explores the widespread applications of fibre-reinforced polymer composites ranging from the aerospace sector, automotive parts, construction and building materials, sports equipment, and household appliances. Investigating the advantages of natural fibres, such as superior damping characteristics, low density, biodegradability, abundant availability at low cost and non-abrasive to tooling, the book discusses what makes them a cost-effective alternative reinforcement material for composites in certain applications. The book serves as a useful reference for researchers, graduate students, and engineers in the field of polymer composites.
This thesis provides essential information on the systematic design of assembled lanthanide complexes for functional luminescent materials. It discusses the relationships between assembled structures and photo, thermal, and mechanical properties on the basis of crystallography, spectroscopy, and thermodynamics. The described guidelines for assembled structures will be extremely valuable, both for industrial applications and for readers' fundamental understanding of solid-state photophysics and materials chemistry. Luminescent lanthanide complexes are promising candidates for lighting devices, lasers, and bio-probes owing to their line-like and long-lived emission arising from characteristic 4f-4f transitions. Low-vibrational and asymmetrical coordination structures around lanthanide ions have been introduced to achieve strong luminescence, using specific organic ligands. Recently, assembled lanthanide complexes including coordination polymers and metal organic frameworks have increasingly attracted attention as a new class of luminescent materials offering thermal stability and color tunability. However, improving the luminescence efficiencies of these compounds remains a challenge, and specific molecular designs to control assembled structures and yield additional physical properties have not been established. The author provides a group of bent-angled bridging ligands to boost photoluminescence efficiency, and successfully introduces for the first time glass formability and strong triboluminescence properties.
This book includes contributions from the Materials Processing Fundamentals Symposium held at the TMS 2019 Annual Meeting & Exhibition in San Antonio, Texas. This volume includes contributions on the physical and numerical modeling of materials processing, and covers a range of metals and minerals. Authors present models and results related the basics of processing such as extraction, joining, separation, and casting. The corresponding fundamentals of mass and heat transport as well as physical and thermodynamics properties are addressed, allowing for a cross-disciplinary vision of the field.
This book offers readers a concise yet comprehensive introduction to a set of diagnostic methods for on-line condition monitoring of lubricated tribosystems used in industry. It covers the latest trends in on-line tribodiagnostics, an important and rapidly developing area of tribology. The book also reports on new tools as they have been developed and applied by the authors. A special emphasis is given to the physical fundamentals of opto-magnetic detectors, ferro-analyzers and analyzers of metal particles in lubricated tribosystems, as well as fluorescence methods for real-time oil monitoring in compressors, hydraulic systems and electrical transformers. Further, the book discusses other important issues such as the monitoring of water content in oil, and presents techniques for measuring soot content in oil in diesel engine oils. Lastly, it describes the modular intelligent (SMART) diagnostic system for vehicles. Mainly intended for researchers, industrial and automotive engineers developing cost-effective techniques and sensors for the on-line monitoring of lubricating oil, the book also offers a valuable source of information for students and project managers in the manufacturing, energy, oil and gas, and automotive industry.
This book highlights some of the most important structural, chemical, mechanical and tribological characteristics of DLC films. It is particularly dedicated to the fundamental tribological issues that impact the performance and durability of these coatings. The book provides reliable and up-to-date information on available industrial DLC coatings and includes clear definitions and descriptions of various DLC films and their properties.
This book includes contributions from the Materials Processing Fundamentals Symposium held at the TMS 2018 Annual Meeting & Exhibition in Phoenix, Arizona. Covering the physical and numerical modeling of materials processing, the volume covers a range of metals and minerals. Authors present models and results related the basics of processing such as extraction, joining, separation, and casting. The corresponding fundamentals of mass and heat transport as well as physical and thermodynamics properties are addressed, allowing for a cross-disciplinary vision of the field.
This book presents the selected peer-reviewed proceedings of the International Conference on Innovative Engineering Design (ICOIED 2020). The contents provide a multidisciplinary approach for the development of innovative product design and their benefits for the society. The book presents latest advances in various fields like design process, service development, micro/nano technology, sensors and MEMS, and sustainability in engineering design. This book can be useful for students, researchers, and professionals interested in innovative product/process design and development.
The modern vision of the micromechanism of friction and wear is explored, from the examination of ideal and real crystal structure and adhesion properties to the dynamics of solid frictional interaction. The fundamental quantum-mechanical and relativity principles of particle interaction are considered as basis of friction micro-process examination. The changes in solid structure originated from the influence of different kinds of force fields are considered. The principal possibility of relativity effect manifestation by friction is explained. The critical state of friction - triboplasma - was studied. Structural peculiarities of triboplasma, the kinetics of its transformation during frictional interaction as well as the influence of plasma and postplasma processes on tribojunction friction characteristics and complex formation by friction were examined. The book addresses to tribology researchers.
Modern industry imposes ever increasing requirements upon tools and tool materials as to the provision for performance under the conditions of high cutting speeds and dynamic loads as well as under intensive thermal and chemical interactions with workpiece materials. The industry demands a higher productivity in combination with the accuracy of geometry and dimensions of workpieces and quality of working surfaces of the machined pieces. These requirements are best met by the tool superhard materials (diamond and diamond-like cubic boron nitride). Ceramics based on silicon carbide, aluminum and boron oxides as well as on titanium, silicon and aluminum nitrides offer promise as tool materials. Tungsten-containing cemented carbides are still considered as suitable tool materials. Hi- hardness and high strength composites based on the above materials fit all the requirements imposed by machining jobs when manufacturing elements of machinery, in particular those operating under the extreme conditions of high temperatures and loads. These elements are produced of difficult-- machine high-alloy steels, nickel refractory alloys, high-tech ceramics, materials with metallic and non-metallic coatings having improved wear resistance, as well as of special polymeric and glass-ceramic materials. Materials science at high pressure deals with the use of high-pressure techniques for the development and production of unique materials whose preparation at ambient pressure is impossible (e. g. , diamond, cubic boron nitride, etc. ) or of materials with properties exceeding those of materials produced at ambient pressure (e. g. , high-temperature superconductors).
Micro/nanotribology as a field is concerned with experimental and theoretical investigations of processes ranging from atomic and molecular scales to the microscale, occurring during adhesion, friction, wear, and thin-film lubrication at sliding surfaces. As a field it is truly interdisciplinary, but this confronts the would-be entrant with the difficulty of becoming familiar with the basic theories and applications: the area is not covered in any undergraduate or graduate scientific curriculum. The present work commences with a history of tribology and micro/nanotribology, followed by discussions of instrumentation, basic theories of friction, wear and lubrication on nano- to microscales, and their industrial applications. A variety of research instruments are covered, including a variety of scanning probe microscopes and surface force apparatus. Experimental research and modelling are expertly dealt with, the emphasis throughout being applied aspects.
A discussion of models for the behaviour of gas bearings, particularly of the aspects affecting the stability of the system. The text begins with a discussion of the mathematical models, identifying the stiffness and damping coefficients, and describing the behaviour of the models in unstable regions. It then turns to apply these results to bearings: static characteristics and stability of various rotor systems and an extensive discussion of air rings.
This book provides a comprehensive treatment of the cavitation erosion phenomenon and state-of-the-art research in the field. It is divided into two parts. Part 1 consists of seven chapters, offering a wide range of computational and experimental approaches to cavitation erosion. It includes a general introduction to cavitation and cavitation erosion a detailed description of facilities and measurement techniques commonly used in cavitation erosion studies, an extensive presentation of various stages of cavitation damage (including incubation and mass loss) and insights into the contribution of computational methods to the analysis of both fluid and material behavior. The proposed approach is based on a detailed description of impact loads generated by collapsing cavitation bubbles and a physical analysis of the material response to these loads. Part 2 is devoted to a selection of nine papers presented at the International Workshop on Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction(Grenoble, France, 1-2 March 2011) representing the forefront of research on cavitation erosion. Innovative numerical and experimental investigations illustrate the most advanced breakthroughs in cavitation erosion research. "
This book is a collection of experimental studies demonstrating structure-function relationships in various biological systems having particular surface specialization to increase/decrease friction and adhesion. Studies on snake skin, adhesive pads, wing-interlocking devices and sticky mouthparts of insects as well as anti-adhesive and adhesive surfaces of plants are included in the volume containing four main subsections: (1) adhesion, (2) friction, (3) attachment-devices, (4) attachment-related behavior. Numerous experimental methods for characterizing tribological properties of biological surfaces at macro-, micro-, and nanoscale levels are demonstrated. This book is an excellent collection of publications on biotribology for both engineers and physicists working with biological systems as well as for biologists studying friction and adhesion. Inspirations from biology reported here may be also potentially interesting for biomimetics.
This book defines the current state-of-the-art for predicting the lifetime of plastics exposed to weather and outlines the future research needed to advance this important field of study. Coverage includes progress in developing new science and test methods to determine how materials respond to weather exposure. This book is ideal for researchers and professionals working in the field of service life prediction. This book also: Examines numerous consensus standards that affect commercial products allowing readers to see the future of standards related to service life prediction Provides scientific foundation for latest commercially viable instruments Presents groundbreaking research including the blueprint of a new test method that will significantly shorten the service life prediction process time Covers two of the latest verified predictive models, which demonstrate realized-potential to transform the field
This volume comprises the expert contributions from the invited speakers at the 17th International Conference on Thin Films (ICTF 2017), held at CSIR-NPL, New Delhi, India. Thin film research has become increasingly important over the last few decades owing to the applications in latest technologies and devices. The book focuses on current advances in thin film deposition processes and characterization including thin film measurements. The chapters cover different types of thin films like metal, dielectric, organic and inorganic, and their diverse applications across transistors, resistors, capacitors, memory elements for computers, optical filters and mirrors, sensors, solar cells, LED's, transparent conducting coatings for liquid crystal display, printed circuit board, and automobile headlamp covers. This book can be a useful reference for students, researchers as well as industry professionals by providing an up-to-date knowledge on thin films and coatings.
This book brings together recent developments in the areas of MEMS tribology, novel lubricants and coatings for nanotechnological applications, biomimetics in tribology and fundamentals of micro/nano-tribology. Tribology plays important roles in the functioning and durability of machines at small length scales because of the problems associated with strong surface adhesion, friction, wear etc. Recently, a number of studies have been conducted to understand tribological phenomena at nano/micro scales and many new tribological solutions for MEMS have been proposed.
Fatigue and wear are the most damaging phenomena affecting machines since they result in some 90% of breakdowns. This tutorial book systematically develops a unified overview, named tribo-fatigue, which aims to address the complex wear-fatigue damages. Tribo-fatigue synthesizes aspects of three disciplines: mechanical fatigue, tribology, and reliability of mechanical systems. Tribo-fatigue opens new perspectives for increasing the durability of machines according to the most important criteria of their serviceability. Detailed damage measurement and wear-fatigue tests that enable engineers to design more durable and reliable systems are developed. The book is intended for advanced students, researchers and engineers.
This book provides a comprehensive introduction to and technical description of a unique patented surface-modification technology: plasma surface metallurgy with double-glow discharge plasma process, known as the Xu-Tec process. As such it promotes further attention and interest in scientific research and engineering development in this area, as well as industrial utilization and product commercialization. The Xu-Tec process has opened up a new material engineering field of "Plasma Surface Metallurgy". This surface-modification process can transform many low-grade and low-cost industrial engineering materials into "gold" materials with a high value and high grade or special functions. This improved material can be widely used in industrial production to improve the surface performance and quality of mechanical parts and manufacturing products, and to conserve expensive alloying elements for the benefit of all mankind. "This book will be valuable to those in the general area of surface metallurgy. The substantial description of the Xu-Tec process is very important and should assist in expanding the use of this superior technique. The in-depth explanation of glow discharges and their use in general will also serve as a valuable reference in the field." James E. Thompson, Prof. Fellow of the IEEE Dean of Engineering Emeritus University of Missouri, Columbia, Missouri, USA November, 2016 "A BREAKTHROUGH IN MAKING METAL TOUGHER". ---- SCIENCE & TECHNOLOGY Business Week, July 24, 1989 "NOVEL SURFACE ALLOYING PROCESS" --- THE LEADING EDGE TECHNOLOGY WORDWIDE Materials and Processing Report, Dec. 1987
The 24th Leeds-Lyon Symposium was held in London from 4th-6th September 1997, where it was hosted by the Imperial College of Science, Technology and Medicine. The meeting addressed the topic of "Tribology for Energy Conservation" and attracted a wide range of stimulating papers and speakers. Some 150 delegates from nineteen countries attended and about sixty papers were presented in fifteen sessions. These covered the topics of lubricants, wear, friction reduction, hydrodynamics, elastohydrodynamic lubrication, surface roughness, manufacturing, component life (including condition monitoring), and automotive aspects.
Tribology is emerging from the realm of steam engines and crank-case lubricants and becoming key to vital new technologies such as nanotechnology and MEMS. Wear is an integral part of tribology, and an effective understanding and appreciation of wear is essential in order to achieve the reliable and efficient operation of almost any machine or device. Knowledge in the field has increased considerably over recent years, and continues to expand: this book is intended to stimulate its readers to contribute towards the progress of this fascinating subject that relates to most of the known disciplines in physical science. "Wear - Materials, Mechanisms and Practice" provides the reader with a unique insight into our current understanding of wear, based on the contributions of numerous internationally acclaimed specialists in the field. Offers a comprehensive review of current knowledge in the field of wear. Discusses latest topics in wear mechanism classification. Includes coverage of a wide variety of materials such as metals, polymers, polymer composites, diamonds, and diamond-like films and ceramics. Discusses the chemo-mechanical linkages that control tribology, providing a more complete treatment of the subject than just the conventional mechanical treatments. Illustrated throughout with carefully compiled diagrams that provide a unique insight into the controlling mechanisms of tribology. The state of the art research on wear and the mechanisms of wear featured will be of interest to post-graduate students and lecturers in engineering, materials science and chemistry. The practical applications discussed will appeal to practitioners across virtually all sectors of engineeringand industry including electronic, mechanical and electrical, quality and reliability and design.
In the 1970s and the early 1980s there was an enormous volume of
research and development into the subject of molybdenum disulphide
lubrication, much of which was supported by national governments
for the benefit of defence, aviation or space activities. There
were already some well-established practical guidelines for
deciding when and how to use molybdenum disulphide, but there was
still a considerable lack of universally-accepted theoretical
understanding of some of the important and fundamental aspects of
molybdenum disulphide technology. However, the state of knowledge
was growing rapidly. In the past fifteen years the situation with regard to the
technology of molybdenum disulphide lubrication has stabilised in
many respects, and a measure of consensus has been reached about
some of the mechanisms involved. The use of molybdenum disulphide
has become routine in some industries, and there are many
well-established and reputable commercial products available.
Except in the high-technology field of physical deposition
techniques, especially sputtering, the output of new research
publications has fallen from perhaps two hundred a year in the
1970s to fewer than ten a year in the 1990s. In spite of this
maturing of the subject, it is clear that there are still many
aspects in which disagreements persist about the mechanisms
involved, and which as a result are unclear or misunderstood among
current, and perhaps even more importantly, potential users.
Tribology is the science of friction, lubrication and wear of moving components. Results obtained from tribology are used to reduce energy losses in friction pro cesses, to reduce material losses due to wear, and to increase the service life of components. Contact Mechanics plays an important role in Tribology. Contact Mechanics studies the stress and strain states of bodies in contact; it is contact that leads to friction interaction and wear. This book investigates a variety of contact problems: discrete contact of rough surfaces, the effect of imperfect elasticity and mechanical inhomogeneity of contacting bodies, models of friction and wear, changes in contact characteristics during the wear process, etc. The results presented in this book were obtained during my work at the Insti tute for Problems in Mechanics of the Russian Academy of Sciences. The first steps of this research were carried out under the supervision of Professor L. A. Galin who taught me and showed me the beauty of scientific research and solutions. Some of the problems included in the book were investigated together with my col leagues Dr. M. N. Dobychin, Dr. O. G. Chekina, Dr. I. A. Soldatenkov, and Dr. E. V. Tor skaya from the Laboratory of Friction and Wear (IPM RAS) and Prof. F. Sadeghi from Purdue University (West Lafayette, USA). I would like to express my thanks to them. I am very grateful to Professor G. M. L." |
![]() ![]() You may like...
Sacramento Motorcycling - A Capital City…
Kimberly Reed Edwards
Hardcover
R763
Discovery Miles 7 630
Research Anthology on Strategies for…
Information R Management Association
Hardcover
R15,943
Discovery Miles 159 430
Real Estate Investing Beginners Guide…
David Hewitt, Andrew Peter
Hardcover
R568
Discovery Miles 5 680
|