![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > Tribology (friction & lubrication)
This book provides an overview on current sustainable machining. Its chapters cover the concept in economic, social and environmental dimensions. It provides the reader with proper ways to handle several pollutants produced during the machining process. The book is useful on both undergraduate and postgraduate levels and it is of interest to all those working with manufacturing and machining technology.
This collection of fully peer-reviewed papers were presented at the
26th Leeds-Lyon Tribology Symposium which was held in Leeds, UK,
14-17 September, 1999.
This fully illustrated text explains the basic measurement
techniques, describes the commercially available instruments and
provides an overview of the current perception of 3-D topography
analysis in the academic world and industry, and the commonly used
3-D parameters and plots for the characterizing and visualizing 3-D
surface topography.
This book mainly introduces some basic phenomena and laws of highly ductile materials during elastoplastic deformation, and their engineering applications, such as the transfer and relief of stress concentration in the notch root, the mitigation of possible brittle fracture, the ductile deformation and damage, fatigue, energy absorption, plastic buckling, thermal stress problems, etc. It shows a number of revolutions in modern applications and design, which are beneficial to the safety of modern equipment, and improve applicability. In addition, the first three chapters of this book also briefly introduce the basic knowledge of elastoplastic deformation and analysis as a preliminary knowledge. This book can be used as a textbook for advanced undergraduate students and postgraduate in non-mechanics majors such as mechanical engineering, power, material or civil engineering, as well as scholars and engineers in related fields.
Many scientists and engineers do not realize that, under certain conditions, friction can lead to the formation of new structures at the interface, including in situ tribofilms and various patterns. In turn, these structures-usually formed by destabilization of the stationary sliding regime-can lead to the reduction of friction and wear. Friction-Induced Vibrations and Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact combines the mechanical and thermodynamic methods in tribology, thus extending the field of mechanical friction-induced vibrations to non-mechanical instabilities and self-organization processes at the frictional interface. The book also relates friction-induced self-organization to novel biomimetic materials, such as self-lubricating, self-cleaning, and self-healing materials. Explore Friction from a Different Angle-as a Fundamental Force of Nature The book begins with an exploration of friction as a fundamental force of nature throughout the history of science. It then introduces general concepts related to vibrations, instabilities, and self-organization in the bulk of materials and at the interface. After presenting the principles of non-equilibrium thermodynamics as they apply to the interface, the book formulates the laws of friction and highlights important implications. The authors also analyze wear and lubrication. They then turn their attention to various types of friction-induced vibration, and practical situations and applications where these vibrations are important. The final chapters consider various types of friction-induced self-organization and how these effects can be used for novel self-lubricating, self-cleaning, and self-healing materials. From Frictional Instabilities to Friction-Induced Self-Organization Drawing on the authors' original research, this book presents a new, twenty-first century perspective on friction and tribology. It shows how friction-induced instabilities and vibrations can lead to self-organized structures, and how understanding the structure-property relationships that lead to self-organization is key to designing "smart" biomimetic materials.
The renowned reference work is a practical guide to the selection
and design of the components of machines and to their lubrication.
It has been completely revised for this second edition by leading
experts in the area.
This volume presents a selection of papers from the 2nd International Conference on Computational Methods in Manufacturing (ICCMM 2019). The papers cover the recent advances in computational methods for simulating various manufacturing processes like machining, laser welding, laser bending, strip rolling, surface characterization and measurement. Articles in this volume discuss both the development of new methods and the application and efficacy of existing computational methods in manufacturing sector. This volume will be of interest to researchers in both industry and academia working on computational methods in manufacturing.
This book discusses manufactured carbon for the purposes of being a self-lubricating material for mechanical devices. Topics include; properties and graphite crystals, properties of manufactured carbon, the manufacture of carbon articles, machining carbon, carbon in mechanical seals, carbon in bearings, rotary pumps and motors, metering devices, and piston rings and cylinder liners.
Surfactants play a critical role in Tribology controlling friction, wear, and lubricant properties such as emulsification, demulsification, bioresistance, oxidation resistance, rust prevention and corrosion resistance. This is a critical topic for new materials and devices particularly those built at the nanoscale. This newest volume will address tribological properties of cutting fluids, lubricant performance related to steel surfaces, biolubricants, and novel materials and ways to reduce friction and wear. Scientists from industrial research and development (R&D) organizations and academic research teams in Asia, Europe, the Middle East and North America will participate in the work.
This volume comprises select papers presented at the International Conference on Advances in Manufacturing Technology (ICAMT 2018). It includes contributions from different researchers and practitioners working in the field of advanced manufacturing technology. This book covers diverse topics of contemporary manufacturing technology including material processes, machine tools, cutting tools, robotics and automation, manufacturing systems, optimization technologies, 3D scanning and re-engineering, and 3D printing. Computer applications in design, analysis, and simulation tools for solving manufacturing problems at various levels starting from material designs to complex manufacturing systems are also discussed. This book will be useful for students, researchers, and practitioners working in the field of manufacturing technology.
Covering the theory, application, and testing of contact materials, Electrical Contacts: Principles and Applications, Second Edition introduces a thorough discussion on making electric contact and contact interface conduction; presents a general outline of, and measurement techniques for, important corrosion mechanisms; considers the results of contact wear when plug-in connections are made and broken; investigates the effect of thin noble metal plating on electronic connections; and relates crucial considerations for making high- and low-power contact joints. It examines contact use in switching devices, including the interruption of AC and DC circuits with currents in the range 10mA to 100kA and circuits up to 1000V, and describes arc formation between open contacts and between opening contacts. Arcing effects on contacts such as erosion, welding, and contamination are also addressed. Containing nearly 3,000 references, tables, equations, figures, drawings, and photographs, the book provides practical examples encompassing everything from electronic circuits to high power circuits, or microamperes to mega amperes. The new edition: Reflects the latest advances in electrical contact science and technology Examines current research on contact corrosion, materials, and switching Includes updates and revisions in each chapter, as well as up-to-date references and new figures and examples throughout Delivers three new chapters on the effects of dust contamination, electronic sensing for switching systems, and contact phenomena for micro-electronic systems (MEMS) applications With contributions from recognized experts in the field, Electrical Contacts: Principles and Applications, Second Edition assists practicing scientists and engineers in the prevention of costly system failures, as well as offers a comprehensive introduction to the subject for technology graduate students, by expanding their knowledge of electrical contact phenomena.
Fundamentals of Tribology deals with the fundamentals of lubrication, friction and wear, as well as mechanics of contacting surfaces and their topography. It begins by introducing the reader to the importance of tribology in everyday life and offers a brief history of the subject. It then describes the nature of rough surfaces and the mechanics of contacting elastic solids and their deformation under load and friction in their relative motion. The book goes on to discuss the importance of lubricant rheology with respect to viscosity and density. Then, the principles of hydrodynamic lubrication are covered with derivations of the governing Reynolds and energy equations. Applications of hydrodynamic lubrication in various forms of bearings - journal bearings, thrust bearings and externally pressurised bearings - are outlined. The important and still evolving subject of elastohydrodynamic lubrication is treated in some detail, both at its fundamentals and its applications in thin shell or overlay bearings, cam-followers and internal combustion engine pistons.The fundamentals of biotribology are also covered, particularly its applications to endo-articular mammalian joints such as hip and knee joints and their arthroplasty. In addition, there is a treatment of the rapidly emerging knowledge of tribological phenomena in lightly loaded vanishing conjunctions (nanotribology), in natural systems and very small devices, such as MEMS and high density data storage media. There is also a new chapter on the rapidly emerging subject of surface texturing to promote retention of microreservoirs of lubricant, acting as microbearings and improving lubrication of otherwise poorly lubricated conjunctions.This book targets the undergraduate and postgraduate body as well as engineering professionals in industry, where often a quick solution or understanding of certain tribological fundamentals is sought. The book can also form an initial basis for those interested in research into certain aspects of tribology.
This book summarizes basic lubrication theory, its types and properties, and covers some specific applications of lubrication: diesel and petrol engines, hydraulics, compressors, machine tools and cutting oils. It then focuses on the storage and handling of lubricants, and on lubrication planning.
This book covers a wide range of advanced analytical tools, from electrochemical to in-situ/ex-situ material characterization techniques, as well as the modeling of corrosion systems to foster understanding and prediction. When used properly, these tools can enrich our understanding of material performance (metallic materials, coatings, inhibitors) in various environments/contexts (aqueous corrosion, high-temperature corrosion). The book encourages researchers to develop new corrosion-resistant materials and supports them in devising suitable asset integrity strategies. Offering a valuable resource for researchers, industry professionals, and graduate students alike, the book shows them how to apply these valuable analytical tools in their work.
Friction, wear, and erosion are major issues in mechanical engineering and materials science, resulting in major costs to businesses operating in the automotive, biomedical, petroleum/oil/gas, and structural engineering industries. The good news is, by understanding what friction, wear, or erosion mode predominates in a mechanism or device, you can take action to prevent its costly failure. Seeing Is Believing Containing nearly 300 photos of component failures, macro- and micrographs of surface damage, and schematics on material removal mechanisms collected over 50 years of tribology consulting and research, Friction, Wear, and Erosion Atlas is a must-have quick reference for tribology professionals and laymen alike. Complete with detailed explanations of every friction, wear, and erosion process, the atlas' catalog of images is supported by a wealth of practical guidance on: Diagnosing the specific causes of part failure Identifying popular modes of wear, including rolling and impact, with a special emphasis on adhesion and abrasion Understanding manifestations of friction, such as force traces from a laboratory test rig for a variety of test couples Recognizing liquid droplet, solid particle, slurry, equal impingement, and cavitation modes of erosion Developing solutions to process-limiting problems Featuring a glossary of tribology terms and definitions, as well as hundreds of visual representations, Friction, Wear, and Erosion Atlas is both user friendly and useful. It not only raises awareness of the importance of tribology, but provides guidance for how designers can proactively mitigate tribology concerns.
Many scientists and engineers do not realize that, under certain conditions, friction can lead to the formation of new structures at the interface, including in situ tribofilms and various patterns. In turn, these structures-usually formed by destabilization of the stationary sliding regime-can lead to the reduction of friction and wear. Friction-Induced Vibrations and Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact combines the mechanical and thermodynamic methods in tribology, thus extending the field of mechanical friction-induced vibrations to non-mechanical instabilities and self-organization processes at the frictional interface. The book also relates friction-induced self-organization to novel biomimetic materials, such as self-lubricating, self-cleaning, and self-healing materials. Explore Friction from a Different Angle-as a Fundamental Force of Nature The book begins with an exploration of friction as a fundamental force of nature throughout the history of science. It then introduces general concepts related to vibrations, instabilities, and self-organization in the bulk of materials and at the interface. After presenting the principles of non-equilibrium thermodynamics as they apply to the interface, the book formulates the laws of friction and highlights important implications. The authors also analyze wear and lubrication. They then turn their attention to various types of friction-induced vibration, and practical situations and applications where these vibrations are important. The final chapters consider various types of friction-induced self-organization and how these effects can be used for novel self-lubricating, self-cleaning, and self-healing materials. From Frictional Instabilities to Friction-Induced Self-Organization Drawing on the authors' original research, this book presents a new, twenty-first century perspective on friction and tribology. It shows how friction-induced instabilities and vibrations can lead to self-organized structures, and how understanding the structure-property relationships that lead to self-organization is key to designing "smart" biomimetic materials.
The manufacture and use of almost every consumer and industrial product rely on application of advanced knowledge in surface science and tribology. These two disciplines are of critical importance in major economic sectors, such as mining, agriculture, manufacturing (including metals, plastics, wood, computers, MEMS, NEMS, appliances), construction, transportation, and medical instruments, transplants, and diagnostic devices. An up-to-date reference with contributions by experts in surface science and tribology, Surfactants in Tribology, Volume 3 discusses some of the underlying tribological and surface science issues relevant to many situations in diverse industries. The tradition of presenting new developments and research that began with the first volume in this groundbreaking series continues in the third volume. Comprising 19 chapters on various aspects of surfactants in tribology-including subjects not covered in previous volumes-this book is presented in four parts: Nanotribology and Polymeric Systems, Biobased and Environmentally Friendly Lubricants and Additives, Tribological Properties of Aqueous and Nonaqueous Systems, and Advanced Tribological Concepts. Topics include tribological properties of nanoparticles, biopolymer friction, environmentally friendly surface-active agents, biolubricants, aqueous mixed surfactant systems, and surfactants in motor oil, drilling fluids, and in electrowetting for MEMS and NEMS. The information in this volume provides a cutting-edge reference connecting the fields of surfactants and tribology as a way forward to novel, enhanced methods of controlling lubrication, friction, and wear. Written by a global team of established authorities, this book reflects the latest developments, highlighting the relevance of surfactants in tribological phenomena in a broad range of industries. It provides a valuable resource for readers working in or entering the fields of
Polyester-Based Biocomposites highlights the performance of polyester-based biocomposites reinforced with various natural fibres extracted from leaf, stem, fruit bunch, grass, wood material. It also addresses the characteristics of polyester-based biocomposites reinforced with rice husk fillers and various nanoparticles. The book explores the widespread applications of fibre-reinforced polymer composites ranging from the aerospace sector, automotive parts, construction and building materials, sports equipment, and household appliances. Investigating the advantages of natural fibres, such as superior damping characteristics, low density, biodegradability, abundant availability at low cost and non-abrasive to tooling, the book discusses what makes them a cost-effective alternative reinforcement material for composites in certain applications. The book serves as a useful reference for researchers, graduate students, and engineers in the field of polymer composites.
The replacement of a degenerated joint such as the hip and knee is one of the most outstanding interventions that allows the medical community to restore the patient's quality of life. However, today's patient is increasingly younger and more active and this presents a challenge for the orthopaedic community as a greater demand has been created for a longer lasting artificial joint that can allow the patient to maintain their lifestyle and thus new approaches in biotribology have been focused on this area of research.This invaluable book provides a broad introduction to the boundary conditions, developments and latest research activities already available to the surgeon and offers an insight into solutions being developed for new high performance bearings in joint replacements. The contributors are leading experts in their field and this is the first complete volume to bring together such unique insights. Orthopaedic engineers, surgeons and researchers concerned with new biomaterials would find this a vital reference volume to evaluate the latest state of research in the area.
This book first introduces polymers and polymer composites which are widely used in different industrial and engineering applications where the proper selection of fiber, filler, and polymer can be tailored for particular application. The primary objective of this book is to broaden the knowledge of tribology of polymer composites in a new dimension for Industry 4.0. For instance, the book covers polymer composites used as self-lubricating material used in the automotive industry and other manufacturing equipment to reduce the effect of energy loss due to friction and wear. This book is of interest to researchers and industrial practitioners who work in the field of tribology of polymer composites, manufacturing equipment and production engineering.
This first of its kind text enables today's students to understand current and future energy challenges, to acquire skills for selecting and using materials and manufacturing processes in the design of energy systems, and to develop a cross-functional approach to materials, mechanics, electronics and processes of energy production. While taking economic and regulatory aspects into account, this textbook provides a comprehensive introduction to the range of materials used for advanced energy systems, including fossil, nuclear, solar, bio, wind, geothermal, ocean and hydropower, hydrogen, and nuclear, as well as thermal energy storage and electrochemical storage in fuel cells. A separate chapter is devoted to emerging energy harvesting systems. Integrated coverage includes the application of scientific and engineering principles to materials that enable different types of energy systems. Properties, performance, modeling, fabrication, characterization and application of structural, functional and hybrid materials are described for each energy system. Readers will appreciate the complex relationships among materials selection, optimizing design, and component operating conditions in each energy system. Research and development trends of novel emerging materials for future hybrid energy systems are also considered. Each chapter is basically a self-contained unit, easily enabling instructors to adapt the book for coursework. This textbook is suitable for students in science and engineering who seek to obtain a comprehensive understanding of different energy processes, and how materials enable energy harvesting, conversion, and storage. In setting forth the latest advances and new frontiers of research, the text also serves as a comprehensive reference on energy materials for experienced materials scientists, engineers, and physicists. Includes pedagogical features such as in-depth side bars, worked-out and end-of- chapter exercises, and many references to further reading Provides comprehensive coverage of materials-based solutions for major and emerging energy systems Brings together diverse subject matter by integrating theory with engaging insights
Tribology of Graphene: Simulation Methods, Preparation Methods, and Their Applications provides an exhaustive reference guide on the tribology of graphene-based materials. The book begins with a discussion on the selection of the proper graphene-based material and then segues into how to choose a deposition method, how to control of its structure and properties, and the most effective working conditions and applications. The latest developments in theoretical simulations of graphene friction, preparation methods, and effective applications are all reviewed, as are the ways various graphene coatings can be successfully employed to decrease friction and wear in nano-, micro- and macro-mechanical applications.
This book highlights the mechanical properties of nanomaterials produced by several techniques for various applications. The dislocations observed in specimens obtained in nanomaterials are discussed on the chapter about deformation process. Partial dislocations and grain boundary sliding deformation phenomena in nanomaterial specimens are also deeply discussed. Tests for tension, compression, and hardness are described. The behavior of nanomaterials is compared to macrosize specimens, and the results obtained for different fabrication methods are also compared. The special characteristics of nanomaterials are summarized at the end of the book.
This book discusses relevant topics in field of corrosion, from sensing strategies to modeling of control processes, corrosion prevention, detection of corrosion initiation, prediction of corrosion growth and evolution, to maintenance practices and return on investment.Written by leading international experts, it combines mathematical and scientific rigor with multiple case studies, examples, colorful images, case studies and numerous references exploring the essentials of corrosion in depth. It appeals to a wide readership, including corrosion engineers, managers, students and industrial and government staff, and can serve as a reference text for courses in materials, mechanical and aerospace engineering, as well as anyone working on corrosion processes. |
![]() ![]() You may like...
Behind Prison Walls - Unlocking a Safer…
Edwin Cameron, Rebecca Gore, …
Paperback
Heat Shock Proteins in Veterinary…
Alexzander A.A. Asea, Punit Kaur
Hardcover
R5,110
Discovery Miles 51 100
SIMD Programming Manual for Linux and…
Paul Cockshott, Kenneth Renfrew
Hardcover
R3,191
Discovery Miles 31 910
Biology of Aminoacyl-tRNA Synthetases…
Lluis Ribas de Pouplana, Laurie S. Kaguni
Hardcover
|