![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > Tribology (friction & lubrication)
Two typical hybrid laser surface modification processes, i.e. electro/magnetic field aided laser process and supersonic laser deposition technology, are introduced in the book, to solve the common problems in quality control and low efficiency of the laser-only surface modification technology, high contamination and high consumption of the traditional surface modification technology. This book focuses on the principle, characteristics, special equipment, process and industrial applications of the hybrid laser surface modification processes based on the recent research results of the author's group, and provides theoretical guidance and engineering reference for the researchers and engineers engaging in the field of surface engineering and manufacturing.
This book addresses the rapidly developing class of solar cell materials and designed to provide much needed information on the fundamental principles of these materials, together with how these are employed in photovoltaic applications. A special emphasize have been given for the space applications through study of radiation tolerant solar cells. This book present a comprehensive research outlining progress on the synthesis, fabrication and application of solar cells from fundamental to device technology and is helpful for graduate students, researchers, and technologists engaged in research and development of materials.
This book comprises the selected contributions from the 2nd World Congress on Condition Monitoring (WCCM 2019), held in Singapore in December 2019. The contents focus on digitalisation for condition monitoring with the emergence of the fourth industrial revolution (Industry 4.0) and the Industrial Internet-of-Things (IIoT). The book covers latest research findings in the areas of condition monitoring, structural health monitoring, and non-destructive testing which are relevant for many sectors including aerospace, automotive, civil, oil and gas, marine, and manufacturing industries. Different monitoring systems and non-destructive testing methods are discussed to avoid failures, increase lifespans, and reduce maintenance costs of equipment and machinery. The broad scope of the contents will make this book interesting for academics and professionals working in the areas of non-destructive evaluation and condition monitoring.
This book discusses relevant topics in field of corrosion, from sensing strategies to modeling of control processes, corrosion prevention, detection of corrosion initiation, prediction of corrosion growth and evolution, to maintenance practices and return on investment.Written by leading international experts, it combines mathematical and scientific rigor with multiple case studies, examples, colorful images, case studies and numerous references exploring the essentials of corrosion in depth. It appeals to a wide readership, including corrosion engineers, managers, students and industrial and government staff, and can serve as a reference text for courses in materials, mechanical and aerospace engineering, as well as anyone working on corrosion processes.
This book elaborates the corrosion testing and assessment methods for the aluminum alloy vessel in the service and internal environment. The emphasis is placed on the research of general materials corrosion characteristics, electrochemical protection design, surface protection, coating and painting, etc. This book helps readers to keep abreast of the whole technology system of the corrosion prevention and control of aluminum alloy vessel, especially the systematic engineering view of life cycle corrosion control for the vessel is of particular interest to readers.
This book contains selected papers from the International Conference on Progress in Automotive Technologies (ICPAT) 2019. The contents focus on several aspects of the automobile industry from design to manufacture, and the challenges involved therein. The book covers latest research trends in the automotive domain including topics such as aerodynamic design, vehicle sensors and electronics, engine combustion modeling, noise and vibration in vehicles, electric and hybrid vehicles, automotive tribology, and battery and fuel cell technologies. The book highlights the use of emerging technologies to tackle the growing environmental challenges. This book will be of interest to students, researchers as well as professionals working in automotive engineering and allied fields.
This volume comprises the expert contributions from the invited speakers at the 17th International Conference on Thin Films (ICTF 2017), held at CSIR-NPL, New Delhi, India. Thin film research has become increasingly important over the last few decades owing to the applications in latest technologies and devices. The book focuses on current advances in thin film deposition processes and characterization including thin film measurements. The chapters cover different types of thin films like metal, dielectric, organic and inorganic, and their diverse applications across transistors, resistors, capacitors, memory elements for computers, optical filters and mirrors, sensors, solar cells, LED's, transparent conducting coatings for liquid crystal display, printed circuit board, and automobile headlamp covers. This book can be a useful reference for students, researchers as well as industry professionals by providing an up-to-date knowledge on thin films and coatings.
This book comprises select proceedings of the International Conference on Futuristic Trends in Materials and Manufacturing (ICFTMM 2018). The volume covers current research findings in conventional and non-conventional manufacturing processes. Different fabrication processes of polymer based materials and advanced materials are discussed in this book. In addition, the book also discusses computer based manufacturing processes, and sustainable and green manufacturing technologies. The contents of this book will be useful for students, academicians, and researchers working in the field of manufacturing related fields.
This book presents selected papers presented during Fatigue Durability India 2019. The contents of this volume discuss advances in the field of fatigue, durability, and fracture, and cover mechanical failure and its applications. The chapters cover a wide spectrum of topics, including design, engineering, testing and computational evaluation of the components or systems for fatigue, durability, and fracture mechanics. The contents of this book will appeal not only to academic researchers, but also to design engineers, failure analysts, maintenance engineers, certification personnel, and R&D professionals involved in a wide variety of industries.
This book conveys, in a self-contained manner, the fundamental concepts for classifying types of contact, the essential mathematical methods for the formulation of contact problems, and the numerical methods required for their solution. In addition to the methodologies, it covers a broad range of applications, including contact problems in mechanical engineering, microelectronics and nanomechanics. All chapters provide both substantial background on the theory and numerical methods, and in-depth treatments of cutting-edge research topics and applications. The book is primarily intended for doctoral students of applied mathematics, mechanics, engineering and physics with a strong interest in the theoretical modelling, numerical simulation and experimental characterization of contact problems in technology. It will also benefit researchers in the above mentioned and neighbouring fields working in academia or at private research and development centres who are interested in a concise yet comprehensive overview of contact mechanics, from its fundamental mathematical background, to the computational methods and the experimental techniques currently available for the solution of contact problems.
This book comprises select papers presented at the International Conference on Mechanical Engineering Design (ICMechD) 2019. The volume focuses on the different design aspects involved in manufacturing, composite materials processing as well as in engineering management. A wide range of topics such as control and automation, mechatronics, robotics, composite and nanomaterial design, and welding design are covered here. The book also discusses current research in engineering management on topics like products, services and system design, optimization in design, manufacturing planning and control, and sustainable product design. Given the range of the contents, this book will prove useful to students, researchers and practitioners.
This book presents an up-to-date overview on the main classes of metallic materials currently used in aeronautical structures and propulsion engines and discusses other materials of potential interest for structural aerospace applications. The coverage encompasses light alloys such as aluminum-, magnesium-, and titanium-based alloys, including titanium aluminides; steels; superalloys; oxide dispersion strengthened alloys; refractory alloys; and related systems such as laminate composites. In each chapter, materials properties and relevant technological aspects, including processing, are presented. Individual chapters focus on coatings for gas turbine engines and hot corrosion of alloys and coatings. Readers will also find consideration of applications in aerospace-related fields. The book takes full account of the impact of energy saving and environmental issues on materials development, reflecting the major shifts that have occurred in the motivations guiding research efforts into the development of new materials systems. Aerospace Alloys will be a valuable reference for graduate students on materials science and engineering courses and will also provide useful information for engineers working in the aerospace, metallurgical, and energy production industries.
This book provides excellent techniques for detecting and evaluating biofilms: sticky films on materials that are formed by bacterial activity and produce a range of industrial and medical problems such as corrosion, sanitary problems, and infections. Accordingly, it is essential to control biofilms and to establish appropriate countermeasures, from both industrial and medical viewpoints. This book offers valuable, detailed information on these countermeasures. It also discusses the fundamentals of biofilms, relates various substrates to biofilms, and presents a variety of biofilm reactors. However, the most important feature of this book (unlike others on the market) is its clear focus on addressing the practical aspects from an engineering viewpoint. Therefore, it offers an excellent practical guide for engineers and researchers in various fields, and can also be used as a great academic textbook.
This title is designed to provide a clear and comprehensive overview of tribology. The book introduces the notion of a surface in tribology where a solid surface is described from topographical, structural, mechanical, and energetic perspectives. It also describes the principal techniques used to characterize and analyze surfaces. The title then discusses what may be called the fundamentals of tribology by introducing and describing the concepts of adhesion, friction, wear, and lubrication. The book focuses on the materials used in tribology, introducing the major classes of materials used, either in their bulk states or as coatings, including both protective layers and other coatings used for decorative purposes. Of especial importance to the tribology community are sections that provide the latest information on Nanotribology, Wear, Lubrication, and Wear-Corrosion: Tribocorrosion and Erosion-Corrosion.
This book discusses the tribological, rheological and optical properties of liquid-crystal nanomaterials as well as lubricant media. It also describes the formation of liquid-crystal materials and the application of cholesteric liquid-crystal compounds in technical friction units and in human and animal joints. Further, it shows the connection between the tribological and other physical properties of liquid-crystal cholesterol compounds and develops a lubricity conceptual model of cholesteric-nematic, liquid-crystalline nanostructures on the basis of physical and energetic interpretations. This general model is valid for all surfaces and friction pairs, including biopolymers, and could lead to applications of cholesteric liquid-crystalline nanomaterials in different friction units and tribosystems as well as in the treatment of joint diseases.
This book includes contributions from the Materials Processing Fundamentals Symposium held at the TMS 2018 Annual Meeting & Exhibition in Phoenix, Arizona. Covering the physical and numerical modeling of materials processing, the volume covers a range of metals and minerals. Authors present models and results related the basics of processing such as extraction, joining, separation, and casting. The corresponding fundamentals of mass and heat transport as well as physical and thermodynamics properties are addressed, allowing for a cross-disciplinary vision of the field.
This thesis provides essential information on the systematic design of assembled lanthanide complexes for functional luminescent materials. It discusses the relationships between assembled structures and photo, thermal, and mechanical properties on the basis of crystallography, spectroscopy, and thermodynamics. The described guidelines for assembled structures will be extremely valuable, both for industrial applications and for readers' fundamental understanding of solid-state photophysics and materials chemistry. Luminescent lanthanide complexes are promising candidates for lighting devices, lasers, and bio-probes owing to their line-like and long-lived emission arising from characteristic 4f-4f transitions. Low-vibrational and asymmetrical coordination structures around lanthanide ions have been introduced to achieve strong luminescence, using specific organic ligands. Recently, assembled lanthanide complexes including coordination polymers and metal organic frameworks have increasingly attracted attention as a new class of luminescent materials offering thermal stability and color tunability. However, improving the luminescence efficiencies of these compounds remains a challenge, and specific molecular designs to control assembled structures and yield additional physical properties have not been established. The author provides a group of bent-angled bridging ligands to boost photoluminescence efficiency, and successfully introduces for the first time glass formability and strong triboluminescence properties.
This book comprises select proceedings of the International Conference on Emerging Trends in Mechanical Engineering (ICETME 2018). The book covers various topics of mechanical engineering like computational fluid dynamics, heat transfer, machine dynamics, tribology, and composite materials. In addition, relevant studies in the allied fields of manufacturing, industrial and production engineering are also covered. The applications of latest tools and techniques in the context of mechanical engineering problems are discussed in this book. The contents of this book will be useful for students, researchers as well as industry professionals.
This thesis investigates the tribological viability of bio-based base stock to which different nanoparticles were incorporated for engine piston-ring-cylinder-liner interaction. It determines experimentally the effects of lubricating oil conditions (new and engine-aged) on the friction and wear of the materials used for piston rings and cylinder liners. The specific base stock examined was a trimethylolpropane (TMP) ester derived from palm oil, and the nanoparticles were used as additives to obtain tribologically enhanced bio-based lubricants. The overall analysis of the results demonstrated the potential of nanoparticles to improve the tribological behavior of bio-based base stock for piston-ring-cylinder-liner interaction.
This book presents a collection of chapters on various aspects of futuristic composite materials, from manufacturing challenges to materials characterization. The book covers the scientific basis of processing and synthesizing futuristic composites, including the prerequisite theoretical background and latest fabrication techniques. The book also discusses industrial applications of composites, such as in aerospace, automotive, and sports equipment. This book will serve as a valuable guide for researchers and professionals working in the area of futuristic lightweight materials.
This textbook discusses the latest advances in the corrosion of metals and related protection methods, and explores all corrosion-related aspects used in natural and industrial environments, including monitoring and testing. Throughout the textbook, the science and engineering of corrosion are merged to help readers perform correct corrosion assessments in both the design phase and plant management phase, and to define the optimal protection technique. In addition, the book addresses basic aspects of corrosion science, including the electrochemical mechanism, thermodynamic and kinetic aspects, the use of Pourbaix and Evans diagrams, and various forms of corrosion (from uniform to localised to stress corrosion phenomena); as well as the protection systems adopted to combat corrosion, including inhibitors, coatings and cathodic protection. Such basic knowledge is fundamental to understanding the "corrosion engineering" approach applied to the durability of metals immersed in water, buried in soil, exposed to the atmosphere, used in reinforced concrete, in the human body and in petrochemical plants, or at risk of high-temperature corrosion. A final chapter is dedicated to the use of statistics in corrosion. All chapters include exercises and practical examples to help students understand, predict, evaluate and mitigate corrosion problems. As such, the book offers the ideal learning resource for all students of corrosion courses in chemical, mechanical, energy and materials engineering at the graduate and advanced undergraduate level, as well as a valuable reference guide for engineers whose work involves real-world applications.
This book provides a comprehensive introduction to and technical description of a unique patented surface-modification technology: plasma surface metallurgy with double-glow discharge plasma process, known as the Xu-Tec process. As such it promotes further attention and interest in scientific research and engineering development in this area, as well as industrial utilization and product commercialization. The Xu-Tec process has opened up a new material engineering field of "Plasma Surface Metallurgy". This surface-modification process can transform many low-grade and low-cost industrial engineering materials into "gold" materials with a high value and high grade or special functions. This improved material can be widely used in industrial production to improve the surface performance and quality of mechanical parts and manufacturing products, and to conserve expensive alloying elements for the benefit of all mankind. "This book will be valuable to those in the general area of surface metallurgy. The substantial description of the Xu-Tec process is very important and should assist in expanding the use of this superior technique. The in-depth explanation of glow discharges and their use in general will also serve as a valuable reference in the field." James E. Thompson, Prof. Fellow of the IEEE Dean of Engineering Emeritus University of Missouri, Columbia, Missouri, USA November, 2016 "A BREAKTHROUGH IN MAKING METAL TOUGHER". ---- SCIENCE & TECHNOLOGY Business Week, July 24, 1989 "NOVEL SURFACE ALLOYING PROCESS" --- THE LEADING EDGE TECHNOLOGY WORDWIDE Materials and Processing Report, Dec. 1987
This book highlights plasma science and technology-related research and development work at institutes and universities networked through Asian African Association for Plasma Training (AAAPT) which was established in 1988. The AAAPT, with 52 member institutes in 24 countries, promotes the initiation and intensification of plasma research and development through cooperation and technology sharing. With 13 chapters on fusion-relevant, laboratory and industrial plasmas for wide range of applications and basic research and a chapter on AAAPT network, it demonstrates how, with collaborations, high-quality, industrially relevant academic and scientific research on fusion, industrial and laboratory plasmas and plasma diagnostics can be successfully pursued in small research labs. These plasma sciences and technologies include pioneering breakthroughs and applications in (i) fusion relevant research in the quest for long-term, clean energy source development using high-temperature, high- density plasmas and (ii) multibillion-dollar, low-temperature, non-equilibrium and thermal industrial plasmas used in processing, synthesis and electronics. |
![]() ![]() You may like...
The Institutional Repository
Richard E. Jones, Theo Andrew, …
Paperback
R1,372
Discovery Miles 13 720
Close Encounters between Bible and Film…
Laura Copier, Caroline Vander Stichele
Hardcover
R1,564
Discovery Miles 15 640
Metallopharmaceuticals I - DNA…
Michael J Clarke, Peter J. Sadler
Hardcover
R5,698
Discovery Miles 56 980
|