![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > Tribology (friction & lubrication)
This book provides excellent techniques for detecting and evaluating biofilms: sticky films on materials that are formed by bacterial activity and produce a range of industrial and medical problems such as corrosion, sanitary problems, and infections. Accordingly, it is essential to control biofilms and to establish appropriate countermeasures, from both industrial and medical viewpoints. This book offers valuable, detailed information on these countermeasures. It also discusses the fundamentals of biofilms, relates various substrates to biofilms, and presents a variety of biofilm reactors. However, the most important feature of this book (unlike others on the market) is its clear focus on addressing the practical aspects from an engineering viewpoint. Therefore, it offers an excellent practical guide for engineers and researchers in various fields, and can also be used as a great academic textbook.
This book reviews the current understanding of the mechanical, chemical and biological processes that are responsible for the degradation of a variety of implant materials. All 18 chapters will be written by internationally renowned experts to address both fundamental and practical aspects of research into the field. Different failure mechanisms such as corrosion, fatigue, and wear will be reviewed, together with experimental techniques for monitoring them, either in vitro or in vivo. Procedures for implant retrieval and analysis will be presented. A variety of biomaterials (stainless steels, titanium and its alloys, nitinol, magnesium alloys, polyethylene, biodegradable polymers, silicone gel, hydrogels, calcium phosphates) and medical devices (orthopedic and dental implants, stents, heart valves, breast implants) will be analyzed in detail. The book will serve as a broad reference source for graduate students and researchers studying biomedicine, corrosion, surface science, and electrochemistry.
This monograph is a first-of-its-kind compilation on high deposition pulse current GMAW process. The nine chapters of this monograph may serve as a comprehensive knowledge tool to use advanced welding engineering in prospective applications. The contents of this book will prove useful to the shop floor welding engineer in handling this otherwise critical welding process with confidence. It will also serve to inspire researchers to think critically on more versatile applications of the unique nature of pulse current in GMAW process to develop cutting edge welding technology.
This book presents an up-to-date overview on the main classes of metallic materials currently used in aeronautical structures and propulsion engines and discusses other materials of potential interest for structural aerospace applications. The coverage encompasses light alloys such as aluminum-, magnesium-, and titanium-based alloys, including titanium aluminides; steels; superalloys; oxide dispersion strengthened alloys; refractory alloys; and related systems such as laminate composites. In each chapter, materials properties and relevant technological aspects, including processing, are presented. Individual chapters focus on coatings for gas turbine engines and hot corrosion of alloys and coatings. Readers will also find consideration of applications in aerospace-related fields. The book takes full account of the impact of energy saving and environmental issues on materials development, reflecting the major shifts that have occurred in the motivations guiding research efforts into the development of new materials systems. Aerospace Alloys will be a valuable reference for graduate students on materials science and engineering courses and will also provide useful information for engineers working in the aerospace, metallurgical, and energy production industries.
Nontraditional machining employs processes that remove material by various methods involving thermal, electrical, chemical and mechanical energy or even combinations of these. Nontraditional Machining Processes covers recent research and development in techniques and processes which focus on achieving high accuracies and good surface finishes, parts machined without burrs or residual stresses especially with materials that cannot be machined by conventional methods. With applications to the automotive, aircraft and mould and die industries, Nontraditional Machining Processes explores different aspects and processes through dedicated chapters. The seven chapters explore recent research into a range of topics including laser assisted manufacturing, abrasive water jet milling and hybrid processes. Students and researchers will find the practical examples and new processes useful for both reference and for developing further processes. Industry professionals and materials engineers will also find Nontraditional Machining Processes to be a source of ideas and processes for development and industrial application.
This book aims to show how tribological concepts can be applied in order to improve manufacturing technology in modern industry. It can be used as a guide book for engineering students or a reference useful for academics in the fields of tribology, manufacturing, materials and mechanical engineering.
This book provides recent information on nanocomposites tribology. Chapter 1 provides information on tribology of bulk polymer nanocomposites and nanocomposite coatings. Chapter 2 is dedicated to nano and micro PTFE for surface lubrication of carbon fabric reinforced polyethersulphone composites. Chapter 3 describes Tribology of MoS2 -based nanocomposites. Chapter 4 contains information on friction and wear of Al2O2 -based composites with dispersed and agglomerated nanoparticles. Finally, chapter 5 is dedicated to wear of multi-scale phase reinforced composites. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels.
Erosive wear is characterized by successive loss of material from the surface due to the continuous impact of solid particles. This type of wear affects numerous industries, such as power generation, mining, and the pneumatic transportation of solids. The worst case scenario normally occurs where there is a combination of both erosion and oxidation, especially at high temperatures. In order to minimize damage caused by erosive wear, many authors propose the use of better bulk materials or surface coatings, and generally cermets are suggested. Various researchers have conducted experiments to study the wear mechanisms occurring in this kind of materials, but most of these experiments do not lead to similar results; in fact, there is no accordance among the authors, and moreover, some wear variables are ignored. In this book, studies undertaken in this field by several investigators have been discussed extensively. At the end of it, table reviews are suggested to summarize the most important mechanisms of the erosive wear in bulk and coating cermets.
The comprehensive reference and textbook serves as a timely, practical introduction to the principles of nanotribology and nanomechanics. Assuming some familiarity with macroscopic tribology, the book comprises chapters by internationally recognized experts, who integrate knowledge of the field from the mechanics and materials-science perspectives. They cover key measurement techniques, their applications, and theoretical modelling of interfaces, each beginning their contributions with macro- and progressing to microconcepts.
This and volume no. 47of "Modern Aspects of Electrochemistry" is composed of eight chapters covering topics having relevance both in corrosion science and materials engineering. In particular, the first seven chapters provide comprehensive coverage of recent advances in corrosion science."
This book focuses on corrosion and microbial corrosion, providing solutions for these problems based on nanotechnology and nanobiotechnology. It introduces the causes, consequences, cost and control of corrosion processes. It gives a particular emphasis on microbial corrosion of steel and other metals in oil, gas and shipping industries. The book presents the materials vulnerable to such kind of corrosion, and the use of nanomaterials to control it.
This book comprises select proceedings of the International Conference on Futuristic Trends in Materials and Manufacturing (ICFTMM) 2019. It covers latest findings and challenges in manufacturing processes and characterization of different advanced materials. Latest fabrication techniques of polymer based materials, biomaterials, and energy materials along with their practical applications are discussed. The contents also focus on cost-effective and energy-efficient sustainable and green manufacturing technologies. The contents of this book will be useful for students, researchers as well as industry professionals interested in characterization and fabrication of materials.
This book elaborates the corrosion testing and assessment methods for the aluminum alloy vessel in the service and internal environment. The emphasis is placed on the research of general materials corrosion characteristics, electrochemical protection design, surface protection, coating and painting, etc. This book helps readers to keep abreast of the whole technology system of the corrosion prevention and control of aluminum alloy vessel, especially the systematic engineering view of life cycle corrosion control for the vessel is of particular interest to readers.
An understanding of friction and wear behavior of materials is crucial in order to improve their performance and durability. New research is providing the opportunity to solve common problems relating to the development of materials, surface modification, coatings, and processing methods across industrie. Processing Techniques and Tribological Behavior of Composite Materials provides relevant theoretical frameworks and the latest empirical research findings on the strategic role of composite tribology in a variety of settings. This book is intended for students, researchers, academicians, and professionals working in industries where wear reduction and performance enhancement of machines and machine elements is essential to success.
Computational elastohydrodynamics, a part of tribology, has existed
happily enough for about fifty years without the use of accurate
models for the rheology of the liquids used as lubricants. For low
molecular weight liquids, such as low viscosity mineral oils, it
has been possible to calculate, with precision, the film thickness
in a concentrated contact provided that the pressure and
temperature are relatively low, even when the pressure variation of
viscosity is not accurately modelled in detail. Other successes
have been more qualitative in nature, using effective properties
which come from the fitting of parameters used in calculations to
experimental measurements of the contact behaviour, friction or
film thickness.
The second edition of this textbook includes refined text in each chapter, new sections on corrosion of steel-reinforced concrete and on cathodic protection of steel reinforced bars embedded in concrete, and some new solved examples. The book introduces mathematical and engineering approximation schemes for describing the thermodynamics and kinetics of electrochemical systems, which are the essence of corrosion science, in addition to electrochemical corrosion, forms of corrosion and mechanisms of corrosion. This approach should capture the reader's attention on the complexity of corrosion. Thus, the principles of electrochemistry and electrochemical cells are subsequently characterized in simple electrolytes from a thermodynamics point of view.
Nanotribology: Critical Assessment and Research Needs is an excellent reference for both academic and industrial researchers working in the fields of nanotechnology, tribology, mechanical engineering, materials science and engineering, MEMS, NEMS, magnetic recording, and biomedical devices. It will also be of interest to those pursuing scanning probe microscopy, nanoimaging, mesomanufacturing, sensors, actuators, aerospace, defense (controllers, microsystems), and military systems. Nanotribology: Critical Assessment and Research Needs provides a critical assessment of the current state of the art of nanotribology within the context of MEMS, mesomanufacturing, nanotechnology and microsystems. It contains chapters written by the leading experts in these fields. It identifies gaps in current knowledge and barriers to applications, and recommends research areas that need to be addressed to enable the rapid development of technologies.
This book examines pedestrian shoe-floor slip resistance from an engineering standpoint in order to better understand friction and wear behavior. This analysis includes an extensive investigation into the surface properties of shoes and flow, and the measurement of dynamic friction and other mechanical and physical aspects of shoe-floor tribology. Lastly, the book proposes a measurement concept for the identification and classification of operational floor surfaces under a range of different conditions. Novel techniques and methods are proposed that can improve the reliability of slip resistance assessments. The current state of knowledge is critically examined and discussed from a tribological perspective, including aspects like friction, wear, lubrication and the mechanical behavior of shoes, floors and their wider environment. Further, the book reports on extensive experimental investigations into the topographical characteristics of shoe and floor surfaces and how they affect slip resistance. Slips resulting in pedestrian falls are a major cause of injuries and deaths for all age groups. This important book provides essential insights for researchers, practicing engineers and public safety officials wishing to learn about how the risk of pedestrian slips can be assessed and understood.
This book summarizes the theoretical and experimental studies confirming the concept of the liquid-crystalline nature of boundary lubrication in synovial joints. It is shown that cholesteric liquid crystals in the synovial liquid play a significant role in the mechanism of intra-articular friction reduction. The results of structural, rheological and tribological research of the creation of artificial synovial liquids containing cholesteric liquid crystals in natural synovial liquids are described. These liquid crystals reproduce the lubrication properties of natural synovia and provide a high chondroprotective efficiency. They were tested in osteoarthritis models and in clinical practice.
Size effect in structures has been taken into consideration over the last years. In comparison with coatings with micrometer-ranged thickness, nanostructured coatings usually enjoy better and appropriate properties, such as strength and resistance. These coatings enjoy unique magnetic properties and are used with the aim of producing surfaces resistant against erosion, lubricant system, cutting tools, manufacturing hardened sporadic alloys, being resistant against oxidation and corrosion. This book reviews researches on fabrication and classification of nanostructured coatings with focus on size effect in nanometric scale. Size effect on electrochemical, mechanical and physical properties of nanocoatings are presented.
In the past ?ve decades considerable attention has been devoted to comp- ite materials. A number of expressions have been suggested by which mac- scopic properties can be predicted when the properties, geometry, and volume concentrations of the constituent components are known. Many expressions are purely empirical or semi-theoretical. Others, however, are theoretically well founded such as the exact results from the following classical boundary studies: Bounds for the elastic moduli of composites made of perfectly coherent homogeneous, isotropic linear elastic phases have been developed by Paul [1] and Hansen [2] for unrestricted phase geometry and by Hashin and Shtrikman [3] for phase geometries, which cause macroscopic homogeneity and isotropy. The composites dealt with in this book are of the latter type. For two speci?c situations (later referred to), Hashin [4] and Hill [5] derived exact - lutionsforthebulkmodulusofsuchmaterials.Hashinconsideredtheso-called Composite Spheres Assemblage (CSA) consisting of tightly packed congruent composite elements made of spherical particles embedded in concentric - trix shells. Hill considered materials in which both phases have identical shear moduli. In the ?eld of predicting the elastic moduli of homogeneous isotropic c- posite materials in general the exact Hashin and Hill solutions are of th- retical interest mainly. Only a few real composites have the geometry de?ned by Hashin or the sti?ness distribution assumed by Hill. The enormous sign- icance, however, of the Hashin/Hill solutions is that they represent bounds which must not be violated by sti?ness predicted by any new theory claiming to consider geometries in general.
A systematic treatment of the thermal and elastic deformation of bearings, seals, and other machine elements under a wide variety of conditions, with particular emphasis on failure mechanisms when high speeds or loads cause significant frictional heating and on methods for predicting and avoiding such failures. Intended for designers and mechanical engineers responsible for high-performance machinery, the book is unique in discussing instabilities driven by frictional heating and thermal expansion and in developing a theoretical approach to engineering design in those cases in which the thermal problems are pivotal. It thus provides a guide as to what is important in the development of high-performance engineering systems. References to recent publications, new material that fill gaps in the literature, a consistent nomenclature, and a large number of worked examples make this a useful text and reference for both researchers and practising engineers.
This book expounds on progress made over the last 35 years in the theory, synthesis, and application of triboluminescence for creating smart structures. It presents in detail the research into utilization of the triboluminescent properties of certain crystals as new sensor systems for smart engineering structures, as well as triboluminescence-based sensor systems that have the potential to enable wireless, in-situ, real time and distributed (WIRD) structural health monitoring of composite structures. The sensor component of any structural health monitoring (SHM) technology - measures the effects of the external load/event and provides the necessary inputs for appropriate preventive/corrective action to be taken in a smart structure - sits at the heart of such a system. This volume explores advances in materials properties and structural behavior underlying creation of smart composite structures and sensor systems for structural health monitoring of critical engineering structures, such as bridges, aircrafts, and wind blades.
This book is written for scientists and engineers wishing to become familiar with biological micro- and nanotribology as a new interdisciplinary field of research combining methods and knowledge of physics, chemistry, mechanics and biology. Biological micro- and nanotribology aims to gather information about friction, adhesion and wear of biological systems and to apply this new knowledge to the design of micro-electro-mechanical systems, the development of new types of monolayer lubrication, the invention of new adhesives or the construction of artificial joints. Biologists, chemists, physicists and tribologists and many other applied scientists will find this book an essential addition to their libraries. Moreover, this book also gives an introduction to the higher levels of micromechanical analysis. It will provide valuable assistance for graduate students intending to become active in interdisciplinary research.
The main objective of the First International Symposium on Lubricated Transport of Viscous Materials was to bring together scientists and engineers from academia and industryto discuss current research work and exchange ideas in this newly emerging field. It is an area offluid dynamics devoted to laying bare the principlesofthe lubricated transport of viscous materials such as crude oil, concentrated oil/water emulsion, slurries and capsules. It encompasses several types of problem. Studies of migration of particulates away from walls, Segre-Silverberg effects, lubrication versus lift and shear-induced migration belong to one category. Some of the technological problems are the fluid dynamics ofcore flows emphasizing studies ofstability, problems of start-up, lift-off and eccentric flow where gravity causes the core flow to stratify. Another category of problems deals with the fouling of pipe walls with oil, with undesirable increases in pressure gradients and even blocking. This study involves subjects like adhesion and dynamic contact angles. The topics ofshear-induced diffusion ofsmall particles and wall slip in slow flow are other appropriate subjects. Computer intensive studiesofflow-induced microstructures and moving interface problems are yet additional research directions. The general consensus was that the Symposium was a tremendous success, although the number of presentations fell below expectations. Scientists from the petroleum industry, and this includes INTEVEP (Venezuela), Schlumberger and Syncrude Canada Ltd., and consultants to oil companies actively participated in the Symposium. The meeting produced new insights which should lead to further interesting research work and established contacts for possiblejoint investigations." |
![]() ![]() You may like...
Donny's Unauthorized Technical Guide to…
Donny Petersen
Hardcover
|