![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Algebraic geometry
This scarce antiquarian book is included in our special Legacy Reprint Series. In the interest of creating a more extensive selection of rare historical book reprints, we have chosen to reproduce this title even though it may possibly have occasional imperfections such as missing and blurred pages, missing text, poor pictures, markings, dark backgrounds and other reproduction issues beyond our control. Because this work is culturally important, we have made it available as a part of our commitment to protecting, preserving and promoting the world's literature.
This scarce antiquarian book is included in our special Legacy Reprint Series. In the interest of creating a more extensive selection of rare historical book reprints, we have chosen to reproduce this title even though it may possibly have occasional imperfections such as missing and blurred pages, missing text, poor pictures, markings, dark backgrounds and other reproduction issues beyond our control. Because this work is culturally important, we have made it available as a part of our commitment to protecting, preserving and promoting the world's literature.
This scarce antiquarian book is included in our special Legacy Reprint Series. In the interest of creating a more extensive selection of rare historical book reprints, we have chosen to reproduce this title even though it may possibly have occasional imperfections such as missing and blurred pages, missing text, poor pictures, markings, dark backgrounds and other reproduction issues beyond our control. Because this work is culturally important, we have made it available as a part of our commitment to protecting, preserving and promoting the world's literature.
This scarce antiquarian book is included in our special Legacy Reprint Series. In the interest of creating a more extensive selection of rare historical book reprints, we have chosen to reproduce this title even though it may possibly have occasional imperfections such as missing and blurred pages, missing text, poor pictures, markings, dark backgrounds and other reproduction issues beyond our control. Because this work is culturally important, we have made it available as a part of our commitment to protecting, preserving and promoting the world's literature.
This single-volume compilation consists of "Hyperbolic Functions, " introducing the hyperbolic sine, cosine, and tangent; "Configuration Theorems, " concerning collinear points and concurrent lines; and "Equivalent and Equidecomposable Figures, " regarding polyhedrons. 1963 edition.
This new-in-paperback edition provides a general introduction to
algebraic and arithmetic geometry, starting with the theory of
schemes, followed by applications to arithmetic surfaces and to the
theory of reduction of algebraic curves.
An introduction to algebraic geometry and a bridge between its
analytical-topological and algebraical aspects, this book explores
fundamental concepts of the general theory of algebraic varieties:
general point, dimension, function field, rational transformations,
and correspondences as well as formal power series and an extensive
survey of algebraic curves. 1953 edition.
Symplectic geometry has its origins as a geometric language for classical mechanics. But it has recently exploded into an independent field interconnected with many other areas of mathematics and physics. The goal of the IAS/Park City Mathematics Institute Graduate Summer School on Symplectic Geometry and Topology was to give an intensive introduction to these exciting areas of current research. Included in this proceedings are lecture notes from the following courses: Introduction to Symplectic Topology by D. McDuff; Holomorphic Curves and Dynamics in Dimension Three by H. Hofer; An Introduction to the Seiberg-Witten Equations on Symplectic Manifolds by C. Taubes; Lectures on Floer Homology by D. Salamon; A Tutorial on Quantum Cohomology by A. Givental; Euler Characteristics and Lagrangian Intersections by R. MacPherson; Hamiltonian Group Actions and Symplectic Reduction by L. Jeffrey; and Mechanics: Symmetry and Dynamics by J. Marsden. Information for our distributors: Titles in this series are copublished with the Institute for Advanced Study/Park City Mathematics Institute.Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
This fine book by Herb Clemens quickly became a favorite of many algebraic geometers when it was first published in 1980. It has been popular with novices and experts ever since. It is written as a book of 'impressions' of a journey through the theory of complex algebraic curves. Many topics of compelling beauty occur along the way. A cursory glance at the subjects visited reveals a wonderfully eclectic selection, from conics and cubics to theta functions, Jacobians, and questions of moduli. By the end of the book, the theme of theta functions becomes clear, culminating in the Schottky problem. The author's intent was to motivate further study and to stimulate mathematical activity. The attentive reader will learn much about complex algebraic curves and the tools used to study them. The book can be especially useful to anyone preparing a course on the topic of complex curves or anyone interested in supplementing his/her reading.
This book contains the contributions resulting from the 6th Italian-Japanese workshop on Geometric Properties for Parabolic and Elliptic PDEs, which was held in Cortona (Italy) during the week of May 20-24, 2019. This book will be of great interest for the mathematical community and in particular for researchers studying parabolic and elliptic PDEs. It covers many different fields of current research as follows: convexity of solutions to PDEs, qualitative properties of solutions to parabolic equations, overdetermined problems, inverse problems, Brunn-Minkowski inequalities, Sobolev inequalities, and isoperimetric inequalities.
Hodge theory originated as an application of harmonic theory to the study of the geometry of compact complex manifolds. The ideas have proved to be quite powerful, leading to fundamentally important results throughout algebraic geometry. This book consists of expositions of various aspects of modern Hodge theory. Its purpose is to provide the nonexpert reader with a precise idea of the current status of the subject. The three chapters develop distinct but closely related subjects: $L^2$ Hodge theory and vanishing theorems; Frobenius and Hodge degeneration; variations of Hodge structures and mirror symmetry.The techniques employed cover a wide range of methods borrowed from the heart of mathematics: elliptic PDE theory, complex differential geometry, algebraic geometry in characteristic $p$, cohomological and sheaf-theoretic methods, deformation theory of complex varieties, Calabi-Yau manifolds, singularity theory, etc. A special effort has been made to approach the various themes from their most natural starting points. Each of the three chapters is supplemented with a detailed introduction and numerous references. The reader will find precise statements of quite a number of open problems that have been the subject of active research in recent years. The reader should have some familiarity with differential and algebraic geometry, with other prerequisites varying by chapter. The book is suitable as an accompaniment to a second course in algebraic geometry.
Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities.This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic background in algebraic geometry. This volume is a continuation of the work presented in the author's previous publication, ""Algebraic Geometry, Volume 136"" in the AMS series, ""Translations of Mathematical Monographs"".
The Hilbert scheme $X^{[n]}$ of a surface $X$ describes collections of $n$ (not necessarily distinct) points on $X$. More precisely, it is the moduli space for $0$-dimensional subschemes of $X$ of length $n$. Recently it was realized that Hilbert schemes originally studied in algebraic geometry are closely related to several branches of mathematics, such as singularities, symplectic geometry, representation theory - even theoretical physics.The discussion in the book reflects this feature of Hilbert schemes. For example, a construction of the representation of the infinite dimensional Heisenberg algebra (i.e., Fock space) is presented. This representation has been studied extensively in the literature in connection with affine Lie algebras, conformal field theory, etc. However, the construction presented in this volume is completely unique and provides the unexplored link between geometry and representation theory. The book offers a nice survey of current developments in this rapidly growing subject. It is suitable as a text at the advanced graduate level.
This is a graduate-level text on algebraic geometry that provides a quick and fully self-contained development of the fundamentals, including all commutative algebra which is used. A taste of the deeper theory is given: some topics, such as local algebra and ramification theory, are treated in depth. The book culminates with a selection of topics from the theory of algebraic curves, including the Riemann-Roch theorem, elliptic curves, the zeta function of a curve over a finite field, and the Riemann hypothesis for elliptic curves.
This volume contains three papers on the foundations of Grothendieck duality on Noetherian formal schemes and on not-necessarily-Noetherian ordinary schemes. The first paper presents a self-contained treatment for formal schemes which synthesizes several duality-related topics, such as local duality, formal duality, residue theorems, dualizing complexes, etc. Included is an exposition of properties of torsion sheaves and of limits of coherent sheaves. A second paper extends Greenlees-May duality to complexes on formal schemes. This theorem has important applications to Grothendieck duality. The third paper outlines methods for eliminating the Noetherian hypotheses.A basic role is played by Kiehl's theorem affirming conservation of pseudo-coherence of complexes under proper pseudo-coherent maps. This work gives a detailed introduction to Grothendieck Duality, unifying diverse topics. For example, local and global duality appear as different cases of the same theorem. Even for ordinary schemes, the approach - inspired by that of Deligne and Verdier - is considerably more general than the one in Hartshorne's classic ""Residues and Duality."" Moreover, close attention is paid to the category-theoretic aspects, especially to justification of all needed commutativities in diagrams of derived functors.
Contains more than fifty carefully refereed and edited full-length papers on the theory and applications of mathematical methods arising out of the Fourth International Conference on Mathematical Methods in Computer Aided Geometric Design, held in Lillehammer, Norway, in July 1997.
Appropriate for a 1 or 2 term course in Abstract Algebra at the Junior level. This book explores the essential theories and techniques of modern algebra, including its problem-solving skills, basic proof techniques, many unusual applications, and the interplay between algebra and geometry. It takes a concrete, example-oriented approach to the subject matter.
The construction of the $p$-adic local Langlands correspondence for $\mathrm{GL}_2(\mathbf{Q}_p)$ uses in an essential way Fontaine's theory of cyclotomic $(\varphi ,\Gamma )$-modules. Here cyclotomic means that $\Gamma = \mathrm {Gal}(\mathbf{Q}_p(\mu_{p^\infty})/\mathbf{Q}_p)$ is the Galois group of the cyclotomic extension of $\mathbf Q_p$. In order to generalize the $p$-adic local Langlands correspondence to $\mathrm{GL}_{2}(L)$, where $L$ is a finite extension of $\mathbf{Q}_p$, it seems necessary to have at our disposal a theory of Lubin-Tate $(\varphi ,\Gamma )$-modules. Such a generalization has been carried out, to some extent, by working over the $p$-adic open unit disk, endowed with the action of the endomorphisms of a Lubin-Tate group. The main idea of this article is to carry out a Lubin-Tate generalization of the theory of cyclotomic $(\varphi ,\Gamma )$-modules in a different fashion. Instead of the $p$-adic open unit disk, the authors work over a character variety that parameterizes the locally $L$-analytic characters on $o_L$. They study $(\varphi ,\Gamma )$-modules in this setting and relate some of them to what was known previously.
This book, a translation of the German volume n-Ecke, presents an elegant geometric theory which, starting from quite elementary geometrical observations, exhibits an interesting connection between geometry and fundamental ideas of modern algebra in a form that is easily accessible to the student who lacks a sophisticated background in mathematics. It stimulates geometrical thought by applying the tools of linear algebra and the algebra of polynomials to a concrete geometrical situation to reveal some rather surprising insights into the geometry of n-gons. The twelve chapters treat n-gons, classes of n-gons, and mapping of the set of n-gons into itself. Exercises are included throughout, and two appendixes, by Henner Kinder and Eckart Schmidt, provide background material on lattices and cyclotomic polynomials. (Mathematical Expositions No. 18)
Die algebraische Geometrie ist eines der grossen aktuellen Forschungsgebiete der Mathematik und hat sich in verschiedene Richtungen und in die Anwendungen hinein verzweigt. Ihre grundlegenden Ideen sind aber bereits im Anschluss an die Algebra-Vorlesung gut zuganglich und stellen fur viele weitere Vertiefungsrichtungen eine Bereicherung dar. Diese Einfuhrung baut deshalb auf der Algebra auf und richtet sich an Bachelor- und Master-Studierende etwa ab dem funften Semester. Die geometrischen Begriffe werden erst nah an der Algebra eingefuhrt - illustriert durch viele Beispiele. Anschliessend werden sie auf die projektive Geometrie ubertragen und weiterentwickelt. Auch weiterfuhrende Konzepte aus der kommutativen Algebra und die Grundlagen der Computer-Algebra kommen dabei zum Tragen, ohne die technischen Anforderungen zu hoch zu schrauben. Der Autor Daniel Plaumann ist seit 2016 Professor fur Algebra und ihre Anwendungen an der TU Dortmund. Sein Forschungsgebiet ist die reelle algebraische Geometrie.
This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic $0$ and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.
Dieses Buch ebnet dem Leser einen kleinschrittigen und somit gut begehbaren Weg in die algebraische Geometrie. Zentrale Begriffe und Ergebnisse aus kommutativer Algebra und algebraischer Geometrie werden vorgestellt und bilden eine solide Grundlage, um tiefer in die Materie einzusteigen und auch aktuelle Forschungsliteratur selbststandig zu verstehen. Auch wenn einige Beweise dem Leser uberlassen bleiben, ist das Werk bestens zum Nachschlagen geeignet und die Darstellung weitgehend in sich abgeschlossen, externe Referenzen wurden auf ein Mindestmass beschrankt. Der Inhalt Das Buch fuhrt von Kategorientheorie, homologischer und kommutativer Algebra schliesslich zur Schematheorie und Garbenkohomologie. Wegmarken, denen der Leser dabei begegnen wird, sind unter anderem: affine und projektive Schemata, Grundtypen von Morphismen, Faserprodukt, Dimensionstheorie, quasikoharente Garben, Varietaten, allgemeiner Satz von Bezout, Divisoren, Aufblasungen, Kahler-Differentiale, Cech-Kohomologie und Kohomologie der projektiven Raume, Ext-Garben, flache und glatte Morphismen, hoehere direkte Bildgarben, Dualitat und Halbstetigkeitssatze. Der Leser sollte bereits grundlegende Kenntnisse aus der Algebra mitbringen, etwa zu Gruppen-, Koerper- und Galoistheorie sowie Determinanten, Resultanten und elementaren Ergebnissen uber Polynomringe. Ebenfalls notwendig ist eine gewisse Vertrautheit mit Begriffen der allgemeinen mengentheoretischen Topologie. |
You may like...
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,280
Discovery Miles 32 800
Multivariable Calculus, Metric Edition
Daniel K Clegg, James Stewart, …
Hardcover
Experimental Statistical Designs and…
Chu-Hua Kuei, Christian Madu
Hardcover
R2,554
Discovery Miles 25 540
Sliding Mode Control - The Delta-Sigma…
Hebertt Sira-Ramirez
Hardcover
|