![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Algebraic geometry
2012 Reprint of 1942 Edition. Exact facsimile of the original edition, not reproduced with Optical Recognition Software. As a newly minted Ph.D., Paul Halmos came to the Institute for Advanced Study in 1938--even though he did not have a fellowship--to study among the many giants of mathematics who had recently joined the faculty. He eventually became John von Neumann's research assistant, and it was one of von Neumann's inspiring lectures that spurred Halmos to write "Finite Dimensional Vector Spaces." The book brought him instant fame as an expositor of mathematics. Finite Dimensional Vector Spaces combines algebra and geometry to discuss the three-dimensional area where vectors can be plotted. The book broke ground as the first formal introduction to linear algebra, a branch of modern mathematics that studies vectors and vector spaces. The book continues to exert its influence sixty years after publication, as linear algebra is now widely used, not only in mathematics but also in the natural and social sciences, for studying such subjects as weather problems, traffic flow, electronic circuits, and population genetics. In 1983 Halmos received the coveted Steele Prize for exposition from the American Mathematical Society for "his many graduate texts in mathematics dealing with finite dimensional vector spaces, measure theory, ergodic theory, and Hilbert space."
This scarce antiquarian book is included in our special Legacy Reprint Series. In the interest of creating a more extensive selection of rare historical book reprints, we have chosen to reproduce this title even though it may possibly have occasional imperfections such as missing and blurred pages, missing text, poor pictures, markings, dark backgrounds and other reproduction issues beyond our control. Because this work is culturally important, we have made it available as a part of our commitment to protecting, preserving and promoting the world's literature.
This scarce antiquarian book is a selection from Kessinger Publishing's Legacy Reprint Series. Due to its age, it may contain imperfections such as marks, notations, marginalia and flawed pages. Because we believe this work is culturally important, we have made it available as part of our commitment to protecting, preserving, and promoting the world's literature. Kessinger Publishing is the place to find hundreds of thousands of rare and hard-to-find books with something of interest for everyone
Progress in low-dimensional topology has been very quick in the last three decades, leading to the solutions of many difficult problems. Among the earlier highlights of this period was Casson's -invariant that was instrumental in proving the vanishing of the Rohlin invariant of homotopy 3-spheres. The proof of the three-dimensional Poincare conjecture has rendered this application moot but hardly made Casson's contribution less relevant: in fact, a lot of modern day topology, including a multitude of Floer homology theories, can be traced back to his -invariant. The principal goal of this book, now in its second revised edition, remains providing an introduction to the low-dimensional topology and Casson's theory; it also reaches out, when appropriate, to more recent research topics. The book covers some classical material, such as Heegaard splittings, Dehn surgery, and invariants of knots and links. It then proceeds through the Kirby calculus and Rohlin's theorem to Casson's invariant and its applications, and concludes with a brief overview of recent developments. The book will be accessible to graduate students in mathematics and theoretical physics familiar with some elementary algebraic and differential topology, including the fundamental group, basic homology theory, transversality, and Poincare duality on manifolds.
This scarce antiquarian book is included in our special Legacy Reprint Series. In the interest of creating a more extensive selection of rare historical book reprints, we have chosen to reproduce this title even though it may possibly have occasional imperfections such as missing and blurred pages, missing text, poor pictures, markings, dark backgrounds and other reproduction issues beyond our control. Because this work is culturally important, we have made it available as a part of our commitment to protecting, preserving and promoting the world's literature.
This book is a facsimile reprint and may contain imperfections such as marks, notations, marginalia and flawed pages.
Reprint. Paperback. 387 pp. Diophantus of Alexandria, sometimes called "the father of algebra," was an Alexandrian mathematician and the author of a series of books called Arithmetica. These texts deal with solving algebraic equations, many of which are now lost. In studying Arithmetica, Pierre de Fermat concluded that a certain equation considered by Diophantus had no solutions, and noted without elaboration that he had found "a truly marvelous proof of this proposition," now referred to as Fermat's Last Theorem. This led to tremendous advances in number theory, and the study of diophantine equations ("diophantine geometry") and of diophantine approximations remain important areas of mathematical research. Diophantus was the first Greek mathematician who recognized fractions as numbers; thus he allowed positive rational numbers for the coefficients and solutions. In modern use, diophantine equations are usually algebraic equations with integer coefficients, for which integer solutions are sought. Diophantus also made advances in mathematical notation. Heath's work is one of the standard books in the field.
This scarce antiquarian book is included in our special Legacy Reprint Series. In the interest of creating a more extensive selection of rare historical book reprints, we have chosen to reproduce this title even though it may possibly have occasional imperfections such as missing and blurred pages, missing text, poor pictures, markings, dark backgrounds and other reproduction issues beyond our control. Because this work is culturally important, we have made it available as a part of our commitment to protecting, preserving and promoting the world's literature.
This scarce antiquarian book is included in our special Legacy Reprint Series. In the interest of creating a more extensive selection of rare historical book reprints, we have chosen to reproduce this title even though it may possibly have occasional imperfections such as missing and blurred pages, missing text, poor pictures, markings, dark backgrounds and other reproduction issues beyond our control. Because this work is culturally important, we have made it available as a part of our commitment to protecting, preserving and promoting the world's literature.
An Unabridged Printing With Text And All Figures Digitally Enlarged
This scarce antiquarian book is included in our special Legacy Reprint Series. In the interest of creating a more extensive selection of rare historical book reprints, we have chosen to reproduce this title even though it may possibly have occasional imperfections such as missing and blurred pages, missing text, poor pictures, markings, dark backgrounds and other reproduction issues beyond our control. Because this work is culturally important, we have made it available as a part of our commitment to protecting, preserving and promoting the world's literature.
This single-volume compilation consists of "Hyperbolic Functions, " introducing the hyperbolic sine, cosine, and tangent; "Configuration Theorems, " concerning collinear points and concurrent lines; and "Equivalent and Equidecomposable Figures, " regarding polyhedrons. 1963 edition.
This scarce antiquarian book is included in our special Legacy Reprint Series. In the interest of creating a more extensive selection of rare historical book reprints, we have chosen to reproduce this title even though it may possibly have occasional imperfections such as missing and blurred pages, missing text, poor pictures, markings, dark backgrounds and other reproduction issues beyond our control. Because this work is culturally important, we have made it available as a part of our commitment to protecting, preserving and promoting the world's literature.
This scarce antiquarian book is included in our special Legacy Reprint Series. In the interest of creating a more extensive selection of rare historical book reprints, we have chosen to reproduce this title even though it may possibly have occasional imperfections such as missing and blurred pages, missing text, poor pictures, markings, dark backgrounds and other reproduction issues beyond our control. Because this work is culturally important, we have made it available as a part of our commitment to protecting, preserving and promoting the world's literature.
Algebraic geometry plays an important role in several branches of science and technology. This is the last of three volumes by Kenji Ueno algebraic geometry. This, in together with ""Algebraic Geometry 1"" and ""Algebraic Geometry 2"", makes an excellent textbook for a course in algebraic geometry. In this volume, the author goes beyond introductory notions and presents the theory of schemes and sheaves with the goal of studying the properties necessary for the full development of modern algebraic geometry. The main topics discussed in the book include dimension theory, flat and proper morphisms, regular schemes, smooth morphisms, completion, and Zariski's main theorem. Ueno also presents the theory of algebraic curves and their Jacobians and the relation between algebraic and analytic geometry, including Kodaira's Vanishing Theorem. The book contains numerous exercises and problems with solutions. It is suitable for a graduate course on algebraic geometry or for independent study.
An introduction to algebraic geometry and a bridge between its
analytical-topological and algebraical aspects, this book explores
fundamental concepts of the general theory of algebraic varieties:
general point, dimension, function field, rational transformations,
and correspondences as well as formal power series and an extensive
survey of algebraic curves. 1953 edition.
This graduate-level textbook introduces the classical theory of complex tori and abelian varieties, while presenting in parallel more modern aspects of complex algebraic and analytic geometry. Beginning with complex elliptic curves, the book moves on to the higher-dimensional case, giving characterizations from different points of view of those complex tori which are abelian varieties, i.e., those that can be holomorphically embedded in a projective space. This allows, on the one hand, for illuminating the computations of nineteenth-century mathematicians, and on the other, familiarizing readers with more recent theories.Complex tori are ideal in this respect: one can perform 'hands-on' computations without the theory being totally trivial. Standard theorems about abelian varieties are proved, and moduli spaces are discussed. Recent results on the geometry and topology of some subvarieties of a complex torus are also included. The book contains numerous examples and exercises. It is a very good starting point for studying algebraic geometry, suitable for graduate students and researchers interested in algebra and algebraic geometry.
This book contains the contributions resulting from the 6th Italian-Japanese workshop on Geometric Properties for Parabolic and Elliptic PDEs, which was held in Cortona (Italy) during the week of May 20-24, 2019. This book will be of great interest for the mathematical community and in particular for researchers studying parabolic and elliptic PDEs. It covers many different fields of current research as follows: convexity of solutions to PDEs, qualitative properties of solutions to parabolic equations, overdetermined problems, inverse problems, Brunn-Minkowski inequalities, Sobolev inequalities, and isoperimetric inequalities.
This book is an attempt to give a systematic presentation of both
logic and type theory from a categorical perspective, using the
unifying concept of fibred category. Its intended audience consists
of logicians, type theorists, category theorists and (theoretical)
computer scientists.
This volume is dedicated to the memory of the Russian mathematician, V.A. Rokhlin (1919-1984). It is a collection of research papers written by his former students and followers, who are now experts in their fields. The topics in this volume include topology (the Morse-Novikov theory, spin bordisms in dimension 6, and skein modules of links), real algebraic geometry (real algebraic curves, plane algebraic surfaces, algebraic links, and complex orientations), dynamics (ergodicity, amenability, and random bundle transformations), geometry of Riemannian manifolds, theory of Teichmuller spaces, measure theory, etc. The book also includes a biography of Rokhlin by Vershik and two articles which should prove of historical interest. |
![]() ![]() You may like...
Algebras, Lattices, Varieties - Volume…
Ralph S Freese, Ralph N. McKenzie, …
Paperback
R3,307
Discovery Miles 33 070
Algebras, Lattices, Varieties - Volume…
Ralph S Freese, Ralph N. McKenzie, …
Paperback
R3,302
Discovery Miles 33 020
|