![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Zoology & animal sciences > Animal physiology
This new volume of "Current Topics in Developmental Biology"
covers recent progresses in our understanding of animal
metamorphosis. Over a dozen of leading experts reviews studies
ranging from morphological, molecular to genetic analyses of
metamorphosis in a broad spectrum of animals, including insects,
fish.Topicsinclude molecular evolution in metamorphosis, the
synthesis and function of hormones in regulating metamorphic timing
and rate, regulation and function of nuclear hormone receptors,
neuroendocrine control of metamorphosis, tissue specific
metamorphic events such as autophagy and stem cell development, and
applications of genome-wide analysis technologies for studying
metamorphosis.
This book provides a comprehensive look at nonhuman primate social inequalities as models for health differences associated with socioeconomic status in humans. The benefit of the socially-housed monkey model is that it provides the complexity of hierarchical structure and rank affiliation, i.e. both negative and positive aspects of social status. At the same time, nonhuman primates are more amenable to controlled experiments and more invasive studies that can be used in human beings to examine the effects of low status on brain development, neuroendocrine function, immunity, and eating behavior. Because all of these biological and behavioral substrates form the underpinnings of human illness, and are likely shared among primates, the nonhuman primate model can significantly advance our understanding of the best interventions in humans.
This latest volume in this series contains articles on Arachnid
Physiology and Behaviour.The papers in this special issue give rise
to key themes for the future.
With over 43,000 species, spiders are the largest predacious arthropod group. They have developed key characteristics such as multi-purpose silk types, venoms consisting of hundreds of components, locomotion driven by muscles and hydraulic pressure, a highly evolved key-lock mechanism between the complex genital structures, and many more unique features. After 300 million years of evolutionary refinement, spiders are present in all land habitats and represent one of the most successful groups of terrestrial organisms. Ecophysiology combines functional and evolutionary aspects of morphology, physiology, biochemistry and molecular biology with ecology. Cutting-edge science in spiders focuses on the circulatory and respiratory system, locomotion and dispersal abilities, the immune system, endosymbionts and pathogens, chemical communication, gland secretions, venom components, silk structure, structure and perception of colours as well as nutritional requirements. Spiders are valuable indicator species in agroecosystems and for conservation biology. Modern transfer and application technologies research spiders and their products with respect to their value for biomimetics, material sciences, and the agrochemical and pharmaceutical industries.
Avoiding Attack discusses the diversity of mechanisms by which prey avoid predator attacks and explores how such defensive mechanisms have evolved through natural selection. It considers how potential prey avoid detection, how they make themselves unprofitable to attack, how they communicate this status, and how other species have exploited these signals. Using carefully selected examples of camouflage, mimicry, and warning signals drawn from a wide range of species and ecosystems, the authors summarise the latest research into these fascinating adaptations, developing mathematical models where appropriate and making recommendations for future study. This second edition has been extensively rewritten, particularly in the application of modern genetic research techniques which have transformed our recent understanding of adaptations in evolutionary genomics and phylogenetics. The book also employs a more integrated and systematic approach, ensuring that each chapter has a broader focus on the evolutionary and ecological consequences of anti-predator adaptation. The field has grown and developed considerably over the last decade with an explosion of new research literature, making this new edition timely.
This book encapsulates over three decades of the author's work on comparative functional respiratory morphology. It provides insights into the mechanism(s) by which respiratory means and processes originated and advanced to their modern states. Pertinent cross-disciplinary details and facts have been integrated and reexamined in order to arrive at more robust answers to questions regarding the basis of the functional designs of gas exchangers. The utilization of oxygen for energy production is an ancient process, the development and progression of which were underpinned by dynamic events in the biological, physical, and chemical worlds. Many books that have broached the subject of comparative functional respiratory biology have only described the form and function of the end-product, ' the gas exchanger; they have scarcely delved into the factors and the conditions that motivated and steered the development from primeval to modern respiratory means and processes. This book addresses and answers broad questions concerning the critical synthesis of multidisciplinary data, and clarifies previously cryptic aspects of comparative respiratory biology.
The second part of an updated edition of the classic "Methods in
Cell Biology, "Volume 48, this book emphasizes diverse methods and
technologies needed to investigate "C. elegans," both as an
integrated organism and as a model system for research inquiries in
cell, developmental, and molecular biology, as well as in genetics
and pharmacology. By directing its audience to tried-and-true and
cutting-edge recipes for research, this comprehensive collection is
intended to guide investigators of "C. elegans" for years to
come.
"Advances in Insect Physiology" is committed to publishing volumes
containing comprehensive and in-depth reviews on all aspects of
insect physiology. First published in 1963, these volumes are an
essential reference source for invertebrate physiologists, insect
neurobiologists, entomologists, zoologists and insect biochemists.
This volume is themed on small RNAs and RNAi in insects.
This latest volume in this series contains articles on Arachnid
Physiology and Behaviour.The papers in this special issue give rise
to key themes for the future. * Contributions from the leading researchers in entomology * Discusses Arachnid physiology and behavior * Includes in-depth reviews with valuable information for a variety of entomology disciplines
The publication of the extensive seven-volume work "Comprehensive Molecular Insect Science" provided a complete reference encompassing important developments and achievements in modern insect science. One of the most swiftly moving areas in entomological and comparative research is endocrinology, and this volume, "Insect Endocrinology, " is designed for those who desire a comprehensive yet concise work on important aspects of this topic. Because this area has moved quickly since the original publication, articles in this new volume are revised, highlighting developments in the related area since its original publication. "Insect Endocrinology" covers the mechanism of action of insect
hormones during growth and metamorphosis as well as the role of
insect hormones in reproduction, diapause and the regulation of
metabolism. Contents include articles on the juvenile hormones,
circadian organization of the endocrine system, ecdysteroid
chemistry and biochemistry, as well as new chapters on insulin-like
peptides and the peptide hormone Bursicon. This volume will be of
great value to senior investigators, graduate students,
post-doctoral fellows and advanced undergraduate research students.
It can also be used as a reference for graduate courses and
seminars on the topic. Chapters will also be valuable to the
applied biologist or entomologist, providing the requisite
understanding necessary for probing the more applied research
areas.
"Homeostasis and Toxicology of Non-Essential Metals" synthesizes the explosion of new information on the molecular, cellular, and organismal handling of metals in fish in the past 15 years. These elements are no longer viewed by fish physiologists as "heavy metals" that kill fish by suffocation, but rather as interesting moieties that enter and leave fish by specific pathways, which are subject to physiological regulation. The metals featured in this volume are those about which there has been most public and scientific concern, and therefore are those most widely studied by fish researchers. Metals such as Ag, Al, Cd, Pb, Hg, As, Sr, and U have no known nutritive function in fish at present, but are toxic at fairly low levels. The companion volume, "Homeostasis and Toxicology of Essential
Metals, " Volume 31A, covers metals that are either proven to be or
are strongly suspected to be essential in trace amounts, yet are
toxic in higher doses. Metals such as Cu, Zn, Fe, Ni, Co, Se, Mo
and Cr. In addition, three chapters in Volumes 31A and 31B on Basic
Principles (Chapter 1, 31A), Field Studies and Ecological
Integration (Chapter 9, 31A) and Modeling the Physiology and
Toxicology of Metals (Chapter 9, 31B) act as integrative summaries
and make these two volumes a vital set for readers.
"Homeostasis and Toxicology of Essential Metals" synthesizes the explosion of new information on the molecular, cellular, and organismal handling of metals in fish in the past 15 years. These elements are no longer viewed by fish physiologists as "heavy metals" that kill fish by suffocation, but rather as interesting moieties that enter and leave fish by specific pathways, which are subject to physiological regulation. The metals featured in this volume are those about which there has been most public and scientific concern, and therefore are those most widely studied by fish researchers. Metals such as Cu, Zn, Fe, Ni, Co, Se, Mo and Cr are either proven to be or are strongly suspected to be essential in trace amounts, yet are toxic in higher doses. The companion volume, "Homeostasis and Toxicology of
Non-Essential Metals, " Volume 31B, covers metals that have no
known nutritive function in fish at present, but which are toxic at
fairly low levels, such as Ag, Al, Cd, Pb, Hg, As, Sr, and U. In
addition, three chapters in Volumes 31A and 31B on Basic Principles
(Chapter 1, 31A), Field Studies and Ecological Integration (Chapter
9, 31A) and Modeling the Physiology and Toxicology of Metals
(Chapter 9, 31B) act as integrative summaries and make these two
volumes a vital set for readers.
This volume summarizes recent advances in our understanding of the mechanisms that produce successful symbiotic partnerships involving microorganisms. It begins with a basic introduction to the nature of and mechanistic benefits derived from symbiotic associations. Taking that background knowledge as the starting point, the next sections include chapters that examine representative examples of coevolutionary associations that have developed between species of microbes, as well as associations between microbes and plants. The authors conclude with a section covering a broad range of associations between microbes and invertebrate animals, in which they discuss the spectrum of hosts, with examples ranging from bryozoans and corals to nematodes, arthropods, and cephalopods. Join the authors on this journey of understanding!
This collection of reviews will be of considerable interests to biologists and MDs working on any aspect of cardiovascular function. With state-of-the-art reviews written by competent experts in the field, the content is also of interest for MSc and PhD students in most fields of cardiovascular physiology.
Here is a uniquely modern approach to the study of physiological diversity that builds on the tradition established by C. Ladd Prosser's Comparative Animal Physiology. Responding to the need for a rigorously up-to-date, comprehensive survey of function and integrative systems in a variety of species, which is also easily accessible to the user, Dr. Prosser has delivered a thoroughly revised Fourth Edition in a convenient two-volume format. This carefully designed framework lets each volume zero-in on distinct aspects of comparative physiology normally studied as a whole unit. From the study of genetically replicating molecules to investigations of adaptive modulation, these two companion volumes offer an all-encompassing view of the field. With their contemporary approach, scholarly editing, flexible format, and detailed contents, Neural and Integrative Animal Physiology and Environmental and Metabolic Animal Physiology will stand together as the authoritative source in the field
This volume of Methods in Cell Biology, the first of3 parts on the
subject of zebrafish, provides a comprehensive compendia of
laboratory protocols and reviews covering all the new methods
developed since 2004. This first volume provides state-of-the-art
descriptions of novel cellular imaging technologies and methods for
culture of zebrafish stem cells, summarizes protocols for
analyzingthe development of major organ systems including the
central nervous system (CNS), and introduces the use of the
zebrafish as a model system for human diseases.
This series of volumes represents a comprehensive and integrated
treatment of reproduction in vertebrates from fishes of all sorts
through mammals. It is designed to provide a readable, coordinated
description of reproductive basics in each group of vertebrates as
well as an introduction to the latest trends in reproductive
research and our understanding of reproductive events. Whereas each
chapter and each volume is intended to stand alone as a review of
that topic or vertebrate group, respectively, the volumes are
prepared so as to provide a thorough topical treatment across the
vertebrates. Terminology has been standardized across the volumes
to reduce confusion where multiple names exist in the literature,
and a comprehensive glossary of these terms and their alternative
names is provided.
This series of volumes represents a comprehensive and integrated
treatment of reproduction in vertebrates from fishes of all sorts
through mammals. It is designed to provide a readable, coordinated
description of reproductive basics in each group of vertebrates as
well as an introduction to the latest trends in reproductive
research and our understanding of reproductive events. Whereas each
chapter and each volume is intended to stand alone as a review of
that topic or vertebrate group, respectively, the volumes are
prepared so as to provide a thorough topical treatment across the
vertebrates. Terminology has been standardized across the volumes
to reduce confusion where multiple names exist in the literature,
and a comprehensive glossary of these terms and their alternative
names is provided.
"The" "Multifunctional Gut of Fish" provides a comprehensive
synthesis and an integrative overview of the range of gut functions
and their implications for organismal physiology. The highly
diversified anatomy and functions of the gut, including nutrient
uptake, immune barrier function, salt and water homeostasis and
respiration, as well as neuroendocrine actions and control are
covered in detail by leading authors. In addition, this volume
explores the pronounced implications of gut function for whole
animal integrative physiology and compensatory demands for
non-gastrointestinal organs. As the first comprehensive reference
to discuss the diverse morphological and functional adaptations of
the gut, this volume provides an excellent resource for comparative
physiologists, aquaculturists and biomedical researchers employing
fish as model organisms for mammalian physiology. Includes chapters dedicated to anatomical and functional features of the gastro-intestinal tract of fish as well as integrative aspects of gut organ function. Includes in depth coverage of recently recognized implications of feeding on salt homeostasis and acid-base balance. Provides syntheses of implications of gut function for homeostasis. Essential text for those interested in the wide diversity of functions performed by the gut.
Evolutionary biomechanics is the study of evolution through the analysis of biomechanical systems. Its unique advantage is the precision with which physical constraints and performance can be predicted from first principles. Instead of reviewing the entire breadth of the biomechanical literature, a few key examples are explored in depth as vehicles for discussing fundamental concepts, analytical techniques, and evolutionary theory. Each chapter develops a conceptual theme, developing the underlying theory and techniques required for analyses in evolutionary biomechanics. Examples from terrestrial biomechanics, metabolic scaling, and bird flight are used to analyse how physics constrains the design space that natural selection is free to explore, and how adaptive evolution finds solutions to the trade-offs between multiple complex conflicting performance objectives. Evolutionary Biomechanics is suitable for graduate level students and professional researchers in the fields of biomechanics, physiology, evolutionary biology and palaeontology. It will also be of relevance and use to researchers in the physical sciences and engineering.
This volume addresses in detail both livestock's role in climate change and the impacts of climate change on livestock production and reproduction. Apart from these cardinal principles of climate change and livestock production, this volume also examines the various strategies used to mitigate livestock-related GHG emissions, and those which can reduce the impacts of climate change on livestock production and reproduction. Presenting information and case studies collected and analyzed by professionals working in diversified ecological zones, the book explores the influence of climate change on livestock production across the globe. The most significant feature of this book is that it addresses in detail the different adaptation strategies and identifies targets for different stakeholders in connection with climate change and livestock production. Further, it puts forward development plans that will allow the livestock industries to cope with current climate changes and strategies that will mitigate the effects by 2025. Lastly, it provides researchers and policymakers several researchable priorities to help develop economically viable solutions for livestock production with less GHG emissions, promoting a cleaner environment in which human beings and livestock can live in harmony without adverse effects on productivity. Given that livestock production systems are sensitive to climate change and at the same are themselves a contributor to the phenomenon, climate change has the potential to pose an increasingly formidable challenge to the development of the livestock sector. However, there is a dearth of scientific information on adapting livestock production to the changing climate; as such, well-founded reference material on sustaining livestock production systems under the changing climate scenarios in different agro-ecological zones of the world is essential. By methodically and extensively addressing all aspects of climate change and livestock production, this volume offers a valuable tool for understanding the hidden intricacies of climatic stress and its influence on livestock production.
Birds have colonized almost every terrestrial habitat on the planet
- from the poles to the tropics, and from deserts to high mountain
tops. Ecological and Environmental Physiology of Birds focuses on
our current understanding of the unique physiological
characteristics of birds that are of particular interest to
ornithologists, but also have a wider biological relevance.
The study of fish neuroendocrinology has had a significant impact
on our general understanding of the functional roles and evolution
of a variety of neurochemical messengers and systems. Not only do
fish possess unique neuroendocrine features, they have also been
and remain an important vertebrate models for the discovery of new
neuropeptides. In the last fifty years, neuroendocrinologists have
documented a complex and seemingly infinite number of interactions
between hormones and nerve structures. Gradually emerging from this
knowledge is an understanding of the specific neurohormonal
pathways and the messengers responsible for maintaining homeostasis
in an aquatic environment and for regulating the functional systems
that allow for the highly diverse life histories and reproductive
tactics of fish
Periods of environmental hypoxia (Low Oxygen Availability) are
extremely common in aquatic systems due to both natural causes such
as diurnal oscillations in algal respiration, seasonal flooding,
stratification, under ice cover in lakes, and isolation of densely
vegetated water bodies, as well as more recent anthropogenic causes
(e.g. eutrophication). In view of this, it is perhaps not
surprising that among all vertebrates, fish boast the largest
number of hypoxia tolerant species; hypoxia has clearly played an
important role in shaping the evolution of many unique adaptive
strategies. These unique adaptive strategies either allow fish to
maintain function at low oxygen levels, thus extending hypoxia
tolerance limits, or permit them to defend against the metabolic
consequences of oxygen levels that fall below a threshold where
metabolic functions cannot be maintained.
Freshwater eels are almost infinitely improbable creatures. They spawn and die in the middle of the ocean, often associated with undersea mountains. Their tra- parent, leaf-like larvae move with ocean currents for months or years until they approach the mouths of freshwater rivers. Then they undergo a dramatic transf- mation in morphology, physiology and behavior. They move from their planktonic oceanic environment, migrate upstream and live for several years as apex fre- water predators. Then, almost impossibly, as they become sexually mature, they reverse their migration downstream to the ocean and back to spawning grounds to complete their life cycle. The dramatic changes in their life cycles are incredible. The efforts to unravel the details of their life history have been truly daunting. Much of the past research was the work of dedicated individuals who devoted their lifetime research to these fishes. Freshwater eels merit a separate chapter in almost any textbook dealing with ichthyology, marine biology or animal migration. We know a great deal about some aspects of the biology of freshwater eels. However, our understanding of their bi- ogy still resembles a work of art as much as a work of science. To some it appears like the sweeping brush strokes of a Japanese Zen landscape, to others it resembles the work of a French impressionist, and to still others it appears as magic realism. |
You may like...
Extremisms In Africa
Alain Tschudin, Stephen Buchanan-Clarke, …
Paperback
(1)
Into A Raging Sea - Great South African…
Tony Weaver, Andrew Ingram
Paperback
(2)R330 Discovery Miles 3 300
|