![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Atomic & molecular physics
In these days of specialization it is important to bring together physicists working in diverse areas to exchange and share their ideas and excitement. This leads to cross-fertilization of ideas, and it enriches, as in biological systems, a specialized field with new strength, development and direction derived from another area. Although this might be an uncommon thing, it is an important step in our under standing of the physical world around us, which is, after aIl, the main purpose of physics. The seed for this conference was really sowed when one of us (MB) and Mr. Manngard showed some a-scattering data at backward angles to FBM one summer about four years ago. That occasion led to a long research collaboration between the Abo Akademi physicists and other scientists in several countries. The actual idea to explore the possibility of holding a conference, however, crystallized in the summer of 1989 during a visit of FBM to Abo Akademi. The final decision to organize a conference was made after MB visited Profes sor Ben Mottelson in Copenhagen and Professor Anagnostatos in Athens. At this point it was recognized that there are similarities as weIl as differences between clustering phenomena in nuclei and systems consisting of atoms. It was therefore conjectured that it could be very stimulating to bring together these groups to exchange their ideas and to leam from each other's fields. A conference along these lines, we hoped, would contribute to an increased mutual understanding."
There is considerable interest, both fundamental and technological, in the way atoms and molecules interact with solid surfaces. Thus the description of heterogeneous catalysis and other surface reactions requires a detailed understand ing of molecule-surface interactions. The primary aim of this volume is to provide fairly broad coverage of atoms and molecules in interaction with a variety of solid surfaces at a level suitable for graduate students and research workers in condensed matter physics, chemical physics, and materials science. The book is intended for experimental workers with interests in basic theory and concepts and had its origins in a Spring College held at the International Centre for Theoretical Physics, Miramare, Trieste. Valuable background reading can be found in the graduate-Ievel introduction to the physics of solid surfaces by ZangwilI(1) and in the earlier works by Garcia Moliner and F1ores(2) and Somorjai.(3) For specifically molecule-surface interac tions, additional background can be found in Rhodin and Ertl(4) and March.(S) V. Bortolani N. H. March M. P. Tosi References 1. A. Zangwill, Physics at Surfaces, Cambridge University Press, Cambridge (1988). 2. F. Garcia-Moliner and F. Flores, Introduction to the Theory of Solid Surfaces, Cambridge University Press, Cambridge (1979). 3. G. A. Somorjai, Chemistry in Two Dimensions: Surfaces, Cornell University Press, Ithaca, New York (1981). 4. T. N. Rhodin and G. Erd, The Nature of the Surface Chemical Bond, North-Holland, Amsterdam (1979). 5. N. H. March, Chemical Bonds outside Metal Surfaces, Plenum Press, New York (1986)."
The ENAM2001 Conference was held on July 2-7, 2001 at the Rantasipi Aulanko Hotel in Hameenlinna in southern Finland. The conference was organized by the Department of Physics and the Accelerator Laboratory of the University of Jyvaskyla with support from the Physics Departments of the Universities of Helsinki and Turku. This conference, Exotic Nuclei and Atomic Masses has now gained the status of a major nuclear physics serial conference. The previous conference was held in Bellaire, Michigan, USA. The conference was first held in 1967 in Lysekil, Sweden, then entitled Conference on Nuclei Far from Stability. ENAM2001 welcomed 270 participants from 34 countries, including 17 accompanying per sons. The content of the program was selected based on the advice of the International Advisory Committee. The Committee members read and considered 253 submitted abstracts in selecting oral contributions. During the conference week 76 invited and oral talks were given. The rest of the contributions were presented in dedicated poster sessions. Many thanks go to the speakers of oral and poster presentations for their enthusiasm and for the high quality of their work which demonstrated the liveliness of the field. Participation in the lectures was high and contributions from the audience were important towards the success of this conference. The organizers would like to especially thank Cary Davids of Argonne National Laboratory for his comprehensive summary talk, which is also included in these Proceedings.
This volume brings together theoretical ideas on the plasma physics of both hot and dense plasmas in the solar atmosphere and similar physics applied to the tenuous and cooler plasmas found in the heliosphere. It is complemented by recent observations. Helioseismology covers the solar interior and the neutrino problem. Solar and stellar activity cycles are addressed. The dynamics of magnetic flux tubes in the solar atmosphere and material flows through the chromosphere into the upper atmosphere are comprehensively reviewed. Energy release processes and the production of energetic particles are important to understanding events in the solar atmosphere and to the dynamics of the tenuous heliosphere. A glimpse of the future is offered by concluding chapters on new ground-based and space instrumentation.
Few-body resonances are in the frontiers of resonance studies. Very similar problems occur in atomic and molecular physics, nuclear physics and high-energy physics. This collection presents the state of the art of the studies of resonance states in these fields and demonstrates their common methodological aspects. Most of the contributions are theoretical, but quite a few are closely linked with experiments through the data they are dealing with.
A wide range of atomic and solid state phenomena is studied today by means of x-ray excitation or inner-shell ionization, as this volume strikingly illustrates. The strong link between these two fields of investigation is partly the result of the extensive developments within each and also largely due to the broad variety of theoretical and experimental techniques now available. All im portant recent advances are to be found highlighted here; most are substantially reviewed. Two dominant research threads are evident in, the chapters of this book. While clearly distinguishable, they are inescapably en twined. One is concerned with x-ray processes as probes for the study of solid-state effects, the other with the measurement and interpretation of inner-shell and bremsstrahlung processes in iso lated systems. In the first, a given material is made the target in an x-ray tube; in the second, free atoms form the target while a solid material can be used when the effect of the solid environ ment on the excitation processes is negligible. Thus, although inner-shell ionization is predominantly concerned with atoms and x-ray processes with the solid state, there are large regions of overlap which have arisen when a given research technique has de veloped from studies in both areas. To bring out these features we have arranged the chapters in the order: atomic, solid-state, chemical."
As much by chance as by design, the present volume comes closer to having a single theme than any of our earlier volumes. That theme is the properties of nuclear strength functions or, alternatively, the problem of line spreading. The line spreading or strength function concepts are essential for the nucleus because of its many degrees of freedom. The description of the nucleus is approached by using model wave functions-for example, the shell model or the collective model-in which one has truncated the number of degrees of freedom. The question then is how closely do the model wave functions correspond to the actual nuclear wave functions which enjoy all the degrees of freedom of the nuclear Hamiltonian? More precisely, one views the model wave functions as vectors in a Hilbert space and one views the actual wave functions as vectors spanning another, larger Hilbert space. Then the question is: how is a single-model wave function (or vector) spread among the vectors corresponding to the actual wave functions? As an example we consider a model state which is a shell-model wave function with a single nucleon added to a closed shell. Such a model state is called a single-particle wave function. At the energy of the single-particle waVe function one of the actual nuclear wave functions may resemble the single-particle wave function closely.
This is the first volume of a series on a regular up-to-date coverage of important developments in astronomy and astrophysics jointly published by ESO and Springer-Verlag. Here the reader finds a thorough review of the abundances of the elements up to Boron. Special emphasis is laid on primordial abundances of interest to cosmologists in particular, and on stellar production or destruction respectively. The articles written for researchers and graduate students cover theory and most recent data from telescope observations.
This volume reports recent development in nuclear structure physics and closely related topics. Particularly, it centers on new methodologies and recent applications of the nuclear shell model such as quantum Monte Carlo methods, large-scale shell model calculations and microscopic theories of effective interactions. Each review focuses on one fundamental topic closely related to the nuclear shell model. Each topic is covered in sufficient depth and detail to be accessible to a wide audience including nuclear engineers and astrophysicists and those working in various fields of scientific computing and modelling.
In this book, a number of the world's leading researchers in quantum, classical and atomic physics cooperate to present an up-to-date account of the recent progress in the field. The first part highlights the latest advances in semiclassical theory, whilst the second one is devoted to applications to atomic systems. The authors present the material in pedagogical form to make it easy reading for non-specialists, too. Among the topics treated, the reader will find a new quasiclassical quantization scheme for Hamiltonian dynamics, an application of the semiclassical formalism to photodissociation of small molecules and to the Lorentz gas and discussions of tunneling corrections. Furthermore, one finds papers on chaotic ionization, on the behaviour of hydrogen atoms in external fields, e.g. magnetic or microwave fields.
This collection of articles contains a systematic outline of original experimental and theoretical research on photoproduction of neutral pions at protons and at a strongly bound system of a few nucleons, i.e., the helium nucleus. Spark chambers and their use as spectrometers for photons and electrons are described in detail. The articles of the collection include information on a novel method of determining the efficiency of recording apparatus by generating monochromatic photons. The articles de- scribe original theoretical research on the optical anisotropy of nuclei. Problems encountered in experimental studies of operating the synchrotron as a storage-type accelerator of electrons and positrons receive particular attention. The results of this research work are listed, and the problems of oppositely directed electron-positron beams in the 250-MeV synchrotron are considered. The articles should be of interest to physicists, including research workers, teachers, engineers, graduate students, and students in advanced undergraduate courses. v CONTENTS Photoproduction of Neutral Pions at Nucleons and Nuclei B. B. Govorkov, S. P. Denisov, and E. V. Minarik 0 Photoproduction of 1r Mesons at Helium and at Photon Energies of 71 160-240 MeV ...
The Workshop on Radiative Corrections: Results and Perspectives was held at the University of Sussex in fine weather between July 9 and 14 1989. The Workshop was weIl timed: the day after its concluding session the first beam at LEP was circulated. The Original aims of the Workshop were twofold: first to review the existing theoretical work on electroweak radiative corrections in the light of the initial experiments at SLC and LEP, and to attempt to obtain a consensus on the best means of carrying out the calculations of the various processes. This aim became Working Group A on Renormalisation Schemes tor Electroweak Radiative Corrections. The second aim was to review the experimental implementation of radiative corrections and this became Working Group B. Here the problem was to obtain a consensus on the use of Monte Carlo event generators. At the time (March 1987) when Friedrich Dydak wrote to one of us (ND) to suggest a Workshop on the subject of electroweak radiative corrections to take place just before experiments at LEP were to begin, the main theoretical problem was that there was no agreement among theorists on the use of a specific renormalization scheme. Similarly, it was already becoming clear that it was going to be very difficult to compare the experimental results of different groups because they would use different event generators and experimental cuts of their data.
This volume contains the proceedings of the "International Conference on Spin Excitations in Nuclei" held in Telluride, Colo rado, March 25-27, 1982. The motivation for the conference was, in a large part due to the recent development of new variable energy accelerators which produce high quality beams of electrons, protons, and pions that are providing the first precise information on spin excitations in nuclei over a large range of spin and mass. In the past such data had been restricted primarily to light nuclei and were generally resolution limited. Perhaps, the most exciting new result has been the clear observation of the elusive spin-dipole strength (Gamow Teller and Ml) in medium and heavy mass nuclei through the use of the (p, n) and (p, p') reactions at or near zero degrees with 100-200 MeV incident protons. Energy dependence in the isovector parts of the nucleon-nucleon interaction make the 100-200 MeV energy region particularly appropriate for such studies. The clean data from (e, e'), ('IT, 'IT'), (p, p'), and (p, n) on high spin "stretched" states which have particularly simple structure has also been quite impor tant. The recent results contain important new information on the nature of the spin dependent forces in nuclei. These in turn are inherently related to the properties of the nuclear mesonic field and the underlying quantum chromodynamics."
A NATO Advanced Research Workshop on Methods and Mechanisms for Producing Ions from Large Molecules was held at Minaki Lodge, Minaki, Ontario, Canada, from 24 to 28 June 1990. The workshop was hosted by the time-of-flight group of the Department of Physics at the University of Manitoba, and was attended by 64 invited participants from around the world. Twenty-nine invited talks were given and 19 papers were presented as posters. Of the 48 contributions, 38 are included in these proceedings. The conference was organized to study the rapidly changing field of mass spectrometry of biomolecules. Particle-induced desorption (especially with MeV particles) has been the most effective method of producing molecular ions from biomolecules. An important part of the workshop was devoted to recent developments in this field, particularly to progress in understanding the fundamentals of the desorption process. In this respect, the meeting was similar to previous conferences in Marburg, FRG (1978); Paris, F (1980); Uppsala, S (1981); College Station, USA (1983,1984); Wangerooge, FRG (1986); Orsay, F (1988); Spiekeroog, FRG (1989); and to the IFOS series of meetings at Munster, FRG (1981,1983,1985,1987) and L6vAnger, S (1989). As in the most recent of these meetings, there was some emphasis on new developments, particularly cluster bombardment. A departure from the concentration on particle bombardment processes at this conference was inspired by the dramatic results obtained with two new methods for producing molecular ions from large molecules: matrix-assisted laser desorption and electrospray.
The 1985 Summer School on Nuclear Dynamics, organized by the Nuclear Physics Division of the Netherlands' Physical Society, was the sixth in a series that started in 1963. This year's topic has been nuclear dynamics rather than nuclear structure as in the foregoing years. This change reflects a shift in focus to nuclear processes at higher energy, or, more generally, to nuclear processes under less traditional circumstances. For many years nuclear physics has been restricted to the domain of the ground state and excited states of low energy. The boundaries between nuclear physics and high-energy physics are rapidly disappearing, however, and the future will presumably show that the two fields of research will contribute to one another. With the advent of a new generation of heavy-ion and electron accelerators research activities on various new aspects of nuclear dynamics over a wide range of energies have become possible. This research focuses in particular on nonnucleonic degrees of freedom and on nuclear matter under extreme conditions, which require the explicit introduction of quarks into the description of nuclear reactions. Mean-field formulations are no longer adequate for the description of nucleus nucleus collisions at high nucleon energies as the nucleon-nucleon collisions begin to dominate. Novel dynamical theories are being developed, such as those based upon the Boltzmann equation or hadrodynamic models. The vitality of nuclear physics was clearly demonstrated by the enthusiastic lecturers at this summer school. They presented a series of clear and thorough courses on the subjects above."
The Advanced Study Institute on 'Elementary Excitations in Solids, Molecules, and Atoms' was held at the University of Antwerp (U.I.A.) from June 18th till June 30th 1973. The In stitute was sponsored by NATO. Co-sponsors were: Agfa-Gevaert N.V. (Mortsel - Belgium), Bell Telephone Mfg. Co. (Antwerp Belgium), the National Science Foundation (Washington D.C. - U.S.A.) and the University of Antwerp (U.I.A.). A total of 120 lecturers and participants attended the Institute. Over the last few years, substantial progress has been made in the description of the elementary excitations of the elec tronic and vibrational systems and their interactions. Parallel with this, the experimentalists have obtained outstanding re sults, partly as a result of availability of coherent light sour ces from the far infrared through the visible region, and partly because of the availability of synchrotron radiation sources in the soft X-ray region. The results of today will lead to fur ther progress over the next years. It was the purpose of this NATO Advanced Study Institute to present astate of the art, namely a survey of experiment and theory."
The Brentwood Summer Institute on Nuclear and Particle Physics at Intermediate Energies was the second of its kind organised by the TRIUMF group of Universities, the first taking place at Banff in 1970. With the advent of initial beams at the new meson facilities at LAMPF, SIN, NEVIS, CERN S.C. and TRIUMF it was an eminently suitable time for an in-depth study of some of the science which will be possible when these accelerators achieve their design intensities in proton and meson beams. The organizing committee, comprising: Univ. of Alberta G.A. Beer Univ. of Victoria J.M. Cameron J.M. McMillan U.B.C. D.F. Measday U.B.C. R.M. Pearce Univ. of Victoria J.E.D. Pearson U.B.C. J.B. Warren U.B.C. wishes to acknowledge the financial support provided by the North Atlantic Treaty Organisation, the National Research Council of Canada, and Atomic Energy of Canada Ltd., without which the Institute could not have been held. Also we wish to acknowledge the helpful advice of the Scientific Committee of NATO and of Dr. T. Kester, Secretary of this Committee. Many persons from the University of Victoria and the University of British Columbia helped with the local arrangements and we are grateful to them and particularly to the staff of Brentwood College who made the stay of the participants such a pleasant one."
The plan to hold a conference on cosmic plasma physics originated in the Plasma Physics Division of the European Physical Society, whose chairman, B. Lehnert, took the first steps towards its realization. - ESRIN readily adopted this idea, and preliminary contacts with a number of other groups showed that there was a good deal of interest in bringing to gether people working in different areas of the field of cosmic plasma physics. It was clearly felt that an exchange of views and experience, and an attempt to define problem areas, would be profitable. In this spirit a programme was de vised which covered a large variety of topics, ranging from ionospheric to galactic structures. A diversified programme of this kind runs the risk that the communication between the various fields of specialization remains insufficient. It was gratifying to find that within the wide field of cosmic plasma physics a lively dialogue was in fact possible. The Conference was sponsored by the European Physical Society. Financial support was provided by ESRO. It is a pleasure to acknowledge the excellent suggestions of the programme committee members L. Biermann, N. D'Angelo, R. Gendrin, and B. Lehnert. I should like to thank my colleagues B. Bertotti, K. Lackner, and J.F. McKenzie, and numerous other ESRIN staff members, for their valuable help. I feel particularly indebted to the conference secretary, Miss Sachs, who did the real work while I just signed the letters."
ELOISATRON (Eurasiatic Long Intersecting Storage Accelerator) is the name of a research and development project in the field of high energy physics, approved and funded by the Instituto Nazionale di Fisica Nucleare INFN in Italy. The main objective of the project is to conduct research and development studies to promote the construction of a (100 + 100) TeV proton-proton collider in Europe. The present volume contains the proceedings of the 4th INFN ELOISATRON project workshop, held on the topic: New Aspects of High-Energy Proton-Proton Collisions. The workshop took place at the Centro Internazionale di Cultura Scien- tifica "Ettore Majorana" (CCSEM), Erice-Trapani, Sicily, Italy, in the period May 31-June 7, 1987. This was the first workshop in this series which concentrated on physics issues in proton-proton collisions with 1-100 TeV beams; the earlier three INFN ELOISATRON workshops, held at Erice during 1986 and 1987, had mostly dealt with technical issues related to the accelerator and detector aspects of high en- ergy hadron colliders. The present workshop was supported by the Italian Ministry of Education, the Italian Ministry of Scientific and Technological Research, the Sicilian Regional Government and the Ettore Majorana Centre for Scientific Culture. With the successful operation of the CERN Superconducting antiproton-proton Synchrotron (SppS), resulting in the discoveries of the vector bosons W and Z and providing evidence for new aspects of flavour mixings, the interest in very high energy proton beams as probes of fundamental phenomena in nature has mounted worldwide.
Physicists who wish to understand the modeling of confinement of quantum chromodynamics, as exhibited by dual superconductors, will find this book an excellent introduction. The author focuses on the models themselves, especially the Landau--Ginzburg model of a dual superconductor, also called the Dual Abelian Higgs model. |
![]() ![]() You may like...
Forensic Examination of Signatures
Linton A. Mohammed
Hardcover
Handbook of Research on Multimedia…
Sumit Kumar Mahana, Rajesh Kumar Aggarwal, …
Hardcover
R6,114
Discovery Miles 61 140
|