![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Atomic & molecular physics
This monograph, which is the outcome of the ASI on High Pressure Chemistry, Biochemistry, and Materials Science, illustrates new developments in the field of high pressure science. In fact, for chemists, biochemists, and materials scientists, pressure as an experimental variable represents a tool which provides unique information about systems of materials studied. It is interesting to note how the growth of the high pressure field is also reflected in the content of the recent ASI's dealing with this field. The ASI High Pressure Chemistry held in 1977 was followed by the ASI High Pressure Chemistry and Biochemistry held in 1986, and the coverage of the present ASI also includes applications to materials science. In view of the teaching character of the ASI, it is natural that main contributions to this volume present overviews of the different subfields or applications of high pressure research. In contrast, contributed papers offer more specialized aspects of various high pressure studies. The various contributions to this volume make clear the impressive range of fundamental and applied problems that can be studied by high pressure techniques, and also point towards a major growth of high pressure science and technology in the near future. This ASI focused mainly on advances achieved in the six years since the previous ASI devoted to the high pressure field. The organization of this volume is as follows.
This volume contains the lectures and communications presented at the NATO Advanced Research Workshop (NATO ARW 900857) which was held May 5-10, 1991 at McMaster University, Hamilton, Ontario, Canada. A scientific commitee made up of P.P. Lambropoulos (USC & Crete), P.8. Corkum (NRC, Ottawa), and H. B. vL. van den Heuvell (FOM, Amsterdam) guided the organizers, A.D. Bandrauk (Sherbrooke) and S.C. Wallace (Toronto) in preparing a programme which would cover the latest advances in the field of atom and molecule laser interactions. Since the last meeting held in July 1987 on "Atomic and Molecular Processes with Short Intense Laser Pulses", NATO ASI vol 1718 (Plenum Press 1988), considerable progress has been made in understanding high intensity effects on atoms and the concomitant coherence effects. After four years, the emphasis is now shifting more to molecules. The present volume represents therefore this trend with four sections covering the main interests of research endeavours in this area: i) Atoms in Intense Laser-Fields ii) Molecules in Intense Laser Fields iii) Atomic Coherences iv) Molecular Coherences The experience developed over the years in multiphoton atomic processes has been very useful and is the main source of our understanding of similar processes in molecules. Thus ATI (above threshold ionization) has been found to occur in molecules as well as a new phenomenon, ATD (above-threshold dissociation). Laser-induced avoided crossings of molecular electronic surfaces is also now entering the current language of high intensity molecular processes.
The present volume contains the texts of the invited talks delivered at the Sev enth International Conference on Recent Progress in Many-Body Theories held at the University of Minnesota during the period August 26-31, 1991. The proceedings of the Fourth Conference (Oulu, Finland, 1987) and Fifth Conference (Arad, Israel, 1989) have been published by Plenum as the first two volumes of this series. Papers from the First Conference (Trieste, 1978) comprise Nuclear Physics volume A328, Nos. 1, 2. The Second Conference (Oaxtepec, Mexico, 1989) was published by Springer-Verlag as volume 142 of "Lecture Notes in Physics," entitled "Recent Progress in Many Body Theories." Volume 198 of the same series contains the papers from the Third Conference (Altenberg, Germany, 1983). These volumes are intended to cover a broad spectrum of current research topics in physics that benefit from the application of many-body theories for their elucidation. At the same time there is a focus on the development and refinement of many-body methods. One of the major aims of the conference series has been to foster the ex change of ideas among physicists working in such diverse areas as nucleon-nucleon in teractions, nuclear physics, astronomy, atomic and molecular physics, quantum chem istry, quantum fluids, and condensed matter physics. The present volume contains contributions from all of these areas."
The Laser Raman Workshop on the r"eas urement of Gas Properti es i sone of aseries of occasional meetings organized in an informal workshop format through the stimulation of Project SQUID, Office of Naval Research. This workshop is the second to be organized on gas-phase applications of Raman scattering. Both Raman workshops were supported by Project SQUID, ONR, and the Air Force Aero Propulsion Laboratory, Wright-Patterson Air Force Base. The first Raman Workshop was held at the AVCO Everett Research Laboratory, Everett, Massachusetts, with their co-sponsorship in January 1972 under the chairmanship of D. A. Leonard. The present meeting was co-sponsored by the General Electric Research and Development Center, and held at their facility in Schenectady, New York. We are grateful to Project SQUID, AFAPL, and GE for their generous financial support of this Workshop, and to Project SQUID for underwriting the publication costs of the Proceedings. As is always the case for successful meetings, many people contributed substantially to the organization and execution of this workshop. Professor Robert Goulard supported, aided, and encouraged us in the most helpful ways, and we are indebted to him. We received further valuable support and assistance from Dr. Ralph Roberts, Director, and Mr. James R. Patton, Jr., of the Power Branch, Office of Naval Research; from Dr. William H. Heiser, Chief Scientist of the Aero Propulsion Laboratory; and from Dr. James M.
Charge transport through the transfer of protons between molecules has long been recognized as a fundamental process, which plays an important role in many chemical reactions. In particular, proton transfer through Hydrogen (H-) bonds has been identified as the main mechanism, via which many bio logical functions are performed and many properties of such basic substances as proteins and ice can be understood. In this volume, several of these important aspects of the H-bond are rep resented. As the division in different sections already indicates, present day research in proton teansfer in biochemistry, biology, and the physics of water and ice remains highly active and very exciting. Nearly a decade ago, a novel approach to the study of collective proton motion in H-bonded systems was proposed, in which this phenomenon was explained by the propagation of certain coherent structures called solitons. In the years that followed, the approach ofsoliton dynamics was further extended and developed by many researchers around the world, into a legitimate and useful method for the analysis of proton transfer in H-bonded systems. Dr. Stephanos Pnevmatikos, the original Director of this ARW, was one of the pioneers in the application ofsoliton ideas to the study ofcharge transport through H-bonds. Having used similar concepts himself in his research on 2D lattices) he was convinced energy transfer through molecular chains (and that solitons can play an important role in enhancing our understanding of protonic conductivity.
Seven years after the first experiments in the new field of Nuclear Physics, the Highly Relativistic Heavy Ion Physics, the Nato-Advanced- Study-Institute on the 'Particle Production in Highly Excited Matter' was held from July 12 till July 24, 1992, at Il Ciocco, Castelvecchio Pascoli, near Lucca in Italy. The school took place at a mo ment when intensive efforts are mounted by the scientific community of Relativistic Heavy Ion Physics to meet the extraordinary challenge of the new upcoming physics opportunities. The gold beams of 10 GeV A at Brookhaven AGS have been sent to the experiments this Summer and we extent our congratulations to the persons and teams who made this possible. The Relativistic Heavy Ion Collider (RHIC) at Brookhaven is under construction and expected to allow experiments to see collisions in the intersec tion regions early 1998. The lead beams at the SPS at CERN scheduled for summer 1994 are eagerly awaited by 6 large experiments, and many scientists are planning the experiments at the planned LHC with heavy ions to be turned on before the year 2000. Seen against this background of rather fierce activity, we were most delighted when NATO accepted our application for an Advanced Study Institute oriented to the main subject of this young and dynamic field of research. We are very grateful to the Scientific Affairs Division of NATO and Dr. L. DaCunha, the director of the Advanced Study Institute program for giving our community this opportunity.
This volume tries to continue a tradition of reviews of the contemporary research on the foundations of modern physics begun by the volume on the Einstein- Podolsky-Rosen paradox that appeared a few years ago. (I) Its publication coin- cides with the hundredth anniversary of de Broglie's birth (1892), a very welcome superposition, given the lasting influence of the Einstein-de Broglie conception of wave-particle duality. The present book, however, contains papers based on a broad spectrum of basic ideas, some even opposite to those that Einstein and de Broglie would have liked. The order of the contributions in this book is alphabetical by first author's name. It is important here to stress the presence of three reviews of fundamental experimental data, by Hasselbach (electron interferometry), Rauch (neutron interferometry), and Tonomura (Aharonov-Bohm effect). Hasselbach reviews several interesting experiments performed in 1Ubingen with the electron biprism interferometer. Wave-particle duality is brought out in striking ways, e. g. , in the buildup of an interference pattern out of single events. The Sagnac effect for electrons is also discussed. The chapter by Rauch presents interesting results on wave-particle duality for neutrons. Of particular interest are the differences between stochastic and deterministic absorption in the neutron interferometer, and the concrete evidence for the quantum-mechanical 41T-symmetry of spinors. In the short chapter by Tonomura, conclusive evidence for the reality of the Aharonov- Bohm effect is reviewed, collected in experiments based on advanced technologies of electron holography and microlithography.
Proceedings of the International Conference on Advanced Diagnostics for Magnetic and Inertial Fusion, held September 3-7, 2001 at Villa Monastero, Varenna, Italy. This volume focuses on future diagnostic requirements for fusion energy research emphasizing advanced diagnostics, new techniques and areas where further progress is required.
For the eighth Advanced Study Institute (ASI) on Techniques and Concepts of High-Energy Physics we returned once again to the Hotel on the Cay on that speck of land in the harbor of Christiansted, St. Croix, U. S. Virgin Islands. This time, the ASI brought together a total of 73 participants, from 21 countries. The primary support for the meeting was provided, as usual, by the Scientific Affairs Division of the North Atlantic Treaty Organization (NATO). The ASI was cosponsored by the U. S. Department of Energy, by the Fermi National Accelerator Laboratory (Fermilab), by the U. S. National Science Foundation, and by the University of Rochester. A special contribution from the Oliver S. and Jennie R. Donaldson Charitable Trust provided an important degree of flexibility, as well as support for worthy students from developing countries. In addition, the International Science Foundation contributed very generously to the support of a participant from Russia. As in the case of the previous ASls, the scientific program was designed for advanced graduate students and recent PhD recipients in experimental particle physics. The present volume of lectures, although, unfortunately, short of three contributions, should complement the material published in the first seven ASIs, and prove to be of value to a wider audience of physicists. It is a pleasure to acknowledge the encouragement and support that I have continued to receive from colleagues and friends in organizing this meeting.
The first Asia-Pacific Conference on Few-Body Problems in Physics took place from August 23 to August 28, 1999, at the Noda campus of the Sci ence University of Tokyo in Noda-city and Sawayaka Chiba Kenmin Plaza in Kashiwa-city, a suburb of Tokyo close to the Narita-Tokyo International Air port, with the Frontier Research Center for Computation Sciences (FRCCS) of the Science University of Tokyo as the host institute. The High Energy Accel erator Research Organization (KEK), the Institute of Physical and Chemical Research (RIKEN), the Research Center for Nuclear Physics (RCNP)-Osaka University, the Physical Society of Japan, and the Association of Asia Pacific Physical Societies (AAPPS) supported this conference. The conference was initiated in the Asia Pacific area as a counterpart to the successful European Conference on Few-Body Problems in Physics (APFB99), in addition to the International Few-Body Conference Series and the Few Body Gordon Conference series in North America. The Physics of Few-Body Problems covers, as is well known, systems with finite numbers of particles in contrast to many-body systems with very large numbers of particles. Therefore, it covers such wide fields as mesoscopic, atom-molecular, exotic atom, nucleon, hyperon, and quark-gluon physics, plus their applications."
The Hiroshima Workshop on Transport and Thermal Properties of f-Electron Systems, T2PfS, was held in the hotel Greenpia Yasuura on the shores of the Seto Inland Sea near Hiroshima, Japan from August 30, to September 2, 1992, as a satellite meeting of the International Conference of Strongly Correlated Electron Systems in Sendai. The purpose of this workshop was to bring together those scientists who are actively involved in the research of 4f- and 5f-electron systems; particularly the transport and thermal properties such as electrical resistivity, Hall effect, thermoelectric power, thermal conductivity, thermal expansion and specific heat. Hence, the organizing committee limited the number of participants to 60; 25 from abroad and 35 from Japan. In the workshop, all the sessions consisted of oral presentations; 25 invited talks and 5 contributed talks, including at least 10 minutes of discussion for each presentation. The program was divided into the following five topics: [1] Kondo-lattice semiconductors, [2] superconductivity of f-electron systems, [3] anomalous transport and thermal properties of 4f- and 5f-compounds, [4] low-carrier heavy-electron systems and [5] theoretical investigation of heavy-electron and mixed-valence states. This division of topics has been retained in the organization of papers in this volume. Almost all of the invited and contributed papers are included. These papers include excellent reviews of both the recent advances and historical background of each topic. We believe this book would be a tutorial text for researchers working in the field of solid state physics.
From January 8-13,1990, distinguished physicists from many nations came to Chile to share with each other and with Latin American students exciting recent developments. The occasion was the third of a series of meetings on Quantum Mechanics of Fundamental Systems which are held every two years at the Centro de Estudios Cientificos de Santiago. This volume grew out from that gathering. The meeting was possible thanks to the generous support of the Tinker Foundation, the John D. and Catherine T. MacArthur Foundation, the International Centre for Theoretical Physics, the Ministere des AfIaires Etrangeres et Service Culturel et de Cooperation Scientifique et Technique de France, the Third World Academy of Sciences, and FONDECYT-Chile. The happy winds blowing over Chile at the time enhanced the joy provided by the beauty of the physics discussed. Claudio Teitelboim Jorge Zanelli Santiago, Chile vii Contents Chapter 1 Fractional Statistics in Quantum Mechanics Daniel P. Arovas 1. Introduction...1 2. Charge-Flux Composites...4 3. Dilute Anyon Gases ...6 4. Fractional Statistics in the Quantized Hall Effect ...8 5. Many-Body Theory of the Anyon Gas...16 6. Chern-Simons Field Theory and Fractional Statistics ...20 Appendix: Many Anyons in a Magnetic Field...23 . .
The present volume comprises the contributions of some of the participants of the NATO Advance Studies Institute "Turbulence, Weak and Strong", held in Cargese, in August 1994. More than 70 scientists, from seniors to young students, have joined to gether to discuss and review new (and not so new) ideas and developments in the study of turbulence. One of the objectives of the School was to incorporate, in the same meeting, two aspects of turbulence, which are obviously linked, and which are often treated sep arately: fully developed turbulence (in two and three dimensions) and weak turbulence (essentially one and two-dimensional systems). The idea of preparing a dictionary rather than ordinary proceedings started from the feeling that the terminology of turbulence includes many long, technical, poorly evocative words, which are usually not understood by people exterior to the field, and which might be worth explaining. Students who start working in the field of turbulence face a sort of curious situation: on one side, they are aware that turbulence is related to the disordered, churning flows of torrents, the pow erful movements of water in the oceans, the violent jet streams in the troposphere, the solar eruptions, and they are certainly excited to pierce the mystery of this fascinating, omnipresent phenomenon.
The Olympia conference Frontiers of Fundamental Physics was a gathering of about hundred scientists who carryon their research in conceptually important areas of physical science (they do "fundamental physics"). Most of them were physicists, but also historians and philosophers of science were well represented. An important fraction of the participants could be considered "heretical" because they disagreed with the validity of one or several fundamental assumptions of modern physics. Common to all participants was an excellent scientific level coupled with a remarkable intellectual honesty: we are proud to present to the readers this certainly unique book. Alternative ways of considering fundamental matters should of course be vitally important for the progress of science, unless one wanted to admit that physics at the end of the XXth century has already obtained the final truth, a very unlikely possibility even if one accepted the doubtful idea of the existence of a "final" truth. The merits of the Olympia conference should therefore not be judged a priori in a positive or in a negative way depending on one's refusal or acceptance, respectively, but considered after reading the actual of basic principles of contemporary science, new proposals and evidences there presented. They seem very important to us.
I have been asked by Professor Kikuchi to write a foreword for this interesting book on Dusty Plasmas and other electrical phenomena. This was a somewhat daunting task due to the wide range of topics covered. In what follows I have attempted to summarize most of these topics; for this purpose I have divided them into four groups, namely (a) Dusty Plasmas, (b) The Electrical Environment, (c) Lightning and (d) The Noise Environment. I hope that I have succeeded. in indicating that each section contains much that is of great interest. It is perhaps unnecessary for me to point out that the book contains subjects which are at an exciting and important stage in their development. (a) Dusty Plasmas The subject of dusty plasmas is one of great interest. Dust particles in interplanetary space, within comets, in inter-stellar space and at ever greater distances will in general be charged. The plasma environment will ensure this, bombarding electrons will charge up the particle until it assumes a "floating potential," although time variation can occur. Ultra violet radiation can cause photoemission and in certain cases field emission is a possibility. The motion of the particles will be determined by electric and magnetic fields together with gravity. If the density of charged grains becomes sufficiently high the grains will interact with each other and collective behaviour will ensue. This newly evolving subject entails the study of all kinds of plasma waves.
Theoretical and numerical details of an optimized LCAO (linear combination of atomic orbitals) method for the calculation of self-consistent bandstructures are given together with a variety of examples. The method will be a valuable tool both for researchers engaged in calculations and for scientists looking for numerical results of self-consistent bandstructure calculations. The presentation starts with an introduction to the modern many-body theory of electronic bandstructure. The essentials of the representation with a non-orthogonal basis and the usual tight-binding variants are critically reviewed. A variational approach to the optimization of atom-like basis orbitals is described together with an SCF procedure for band calculations. Complete numerical and graphic results for all elementary metals from lithium to zinc are given.
The quest for many-body techniques and approximations to describe the essential physics of strongly interacting systems with many degrees of freedom is one of the central themes of contemporary nuclear physics. The three articles in this volume describe advances in this quest in three dif ferent areas of nuclear many-body physics: multi quark degrees of freedom in nucleon-nucleon interactions and light nuclei, multinucleon clusters in many-nucleon wave functions and reactions, and the nuclear-shell model. In each case the common issues arise of identifying the relevant degrees of freedom, truncating those that are inessential, formulating tractable approximations, and judiciously invoking phenomenology when it is not possible to proceed from first principles. Indeed, the parallels between the different applications are often striking, as in the case of the similarities in the treatment of clusters of quarks in nucleon-nucleon interactions and clusters of nucleons in nuclear reactions, and the central role of the resonating group approximation in treating both. Despite two decades of effort since the experimental discovery of quarks in nucleons, we are still far from a derivation of nucleon structure and nucleon-nucleon interactions directly from quantum chromodynamics."
The recent developement of high power lasers, delivering femtosecond pulses of 20 2 intensities up to 10 W/cm , has led to the discovery of new phenomena in laser interactions with matter. At these enormous laser intensities, atoms, and molecules are exposed to extreme conditions and new phenomena occur, such as the very rapid multi photon ionization of atomic systems, the emission by these systems of very high order harmonics of the exciting laser light, the Coulomb explosion of molecules, and the acceleration of electrons close to the velocity of light. These phenomena generate new behaviour of bulk matter in intense laser fields, with great potential for wide ranging applications which include the study of ultra-fast processes, the development of high-frequency lasers, and the investigation of the properties of plasmas and condensed matter under extreme conditions of temperature and pressure. In particular, the concept of the "fast ignitor" approach to inertial confinement fusion (ICF) has been proposed, which is based on the separation of the compression and the ignition phases in laser-driven ICF. The aim of this course on "Atom, Solids and Plasmas in Super-Intense Laser fields" was to bring together senior researchers and students in atomic and molecular physics, laser physics, condensed matter and plasma physics, in order to review recent developments in high-intensity laser-matter interactions. The course was held at the Ettore Majorana International Centre for Scientific Culture in Erice from July 8 to July 14,2000.
Quantum mechanics, formulated by Werner Heisenberg in 1925, belongs among the greatest achievements of physics. "Fundamental Physics: Heisenberg and Beyond" combines personal tributes to Werner Heisenberg with assessments of his impact on current and future developments in physics. The first part presents two essays commemorating Werner Heisenberg's 100th birthday, and these are complemented by a short and nicely illustrated biographical note in the appendix. In the second part, incisive articles by ten world-leading scientists explain important developments in fundamental physics to a broader community of interested scientists.
This volume contains the proceedings of the NATO-Advanced Research Workshop (ARW) "Manipulation of atoms under high fields and temperatures: Applications," sponsored by the NATO Scientific Affairs Division, Special Programme on Nanoscale Science. This ARW took place in Summer '92, in the pleasant surroundings of the Hotel des Thermes at Charbonnieres les Bains -Lyon, France. Gathering some fifty experts from different fields, the ARW provided an opportunity to review the basic principles and to highlight the progress made during the last few years on the nanosources and the interactions between atomic-scale probes and samples. The motivation is to use the novel properties attached to the atomic dimensions to develop nanoscale technologies. The perception of the atomic-scale world has greatly changed since the discovery and development, in the early 80's, of Scanning Tunneling Microscopy (STM) by Binnig and Rohrer. Beyond the observation of individual atoms, which is now routine, the concept of playing with atoms has become commonplace. This has lead to the fashioning of tools at the atomic scale, to the deposition, the displacement and the creation of atomic structures and also to the knowledge of interactions and contacts between atoms. Nanotips ending with a single atom are sources of ultra-fine charged beams. They can be unique tools for high resolution observations, for micro fabrications by micro-machining and deposition at a scale not previously attainable, with a working distance less stringent than with STM devices."
This graduate text deals with polarization, alignment, and orientation effects in atomic collisions, induced by electron or heavy particle impact. The first part introduces light and particle polarization, experimenatal and computational methods, and the density matrix and state multipole formalism, with examples and exercises. The second part includes case studies of electron impact and heavy particle excitation, electron transfer, impact ionization and autoionizaztion, with the final chapter discussing related topics and applications. The book includes selected seminal papers of tutorial value from the early history of the field. Intended as an introductory text for both experimental and theoretical students and researchers, the book can be used as a textbook for graduate courses, as a primary source for special topics and seminar courses, and as a standard reference.
The XIV International Workshop on Condensed Matter Theories has been held at the Elba International Physics Center (EIPC), Marciana Marina, Isola d'Elba, Italy, from 18-23 June, 1990. The Workshop started in 1977 in Sao Paolo, Brazil, as the 1st Pan American Workshop on Condensed Matter Theories, with the purpose of bringing together scientists from the Western countries, working in many different topics of Condensed Matter Theories, to facilitate exchanges of ideas and technologies from different areas as well as collaborations among the scientists. The next five Workshops were held at Trieste, Italy (1978), in Buenos Aires, Argentina ( 1979), in Caracas, Venezuela (1980), in Mexico City, Mexico (1981) and in St. Louis, Missouri, U. S. A. (1982). Given the international dimension reached by the Workshop, it was decided to extend it into an International Workshop, which was held for the first time in Altenberg, Germany (1983). The next editions took place in Granada, Spain (1984), San Francisco, California, U. S. A. (1985), Argonne, Illinois, U. S. A. (1986), Oulu, Finland (1987), Taxco, Mexico (1988) and Campos do Jordao, Brasil (1989). Many scientists have contributed to the development of the various editions of the Work shop. However, a particular mention has to be made to Profs. Manuel de Llano and Angel Plastino who initially proposed the Workshop and carried it forward, and to Prof. J . W. Clark, whose efforts have been of immense help to its recent developments.
The aim of this Advanced Research Workshop was to bring together Physicists, Applied Mathematicians and Fluid Dynamicists, including very specially experimentalists, to review the available knowledge on the global structural aspects of turbulent flows, with an especial emphasis on open systems, and to try to reach a consensus on their possible relationship to recent advances in the understanding of the behaviour of low dimensional dynamical systems and amplitude equations. A lot has been learned during recent years on the non-equilibrium behaviour of low dimen sional dynamical systems, including some fluid flows (Rayleigh-Benard, Taylor-Couette, etc. ). These are mostly closed flows and many of the global structural features of the low dimensional systems have been observed in them, including chaotic behaviour, period doubling, intermit tency, etc. . It has also been shown that some of these flows are intrinsically low dimensional, which accounts for much of the observed similarities. Open flows seem to be different, and experimental observations point to an intrinsic high dimensionality. However, some of the tran sitional features of the low dimensional systems have been observed in them, specially in the intermittent behaviour of subcritical flows (pipes, channels, boundary layers with suction, etc. ), and in the large scale geometry of coherent structures of free shear flows (mixing layers, jets and wakes).
Magnetic energy release plays an important role in a wide variety of cosmic objects such as the Sun, stellar coronae, stellar and galactic accretion disks and pulsars. The observed radio, X-ray and gamma-ray emission often directly results from magnetic flares', implying that these processes are spatially fragmented and of an impulsive nature. A true understanding of these processes requires a combined magnetohydrodynamical and plasma physical approach. Fragmented Energy Release in Sun and Stars: the Interface between MHD and Plasma Physics provides a comprehensive, interdisciplinary summary of magnetic energy release in the Sun and stars, in accretion disks, in pulsar magnetospheres and in laboratory plasmas. These proceedings include papers on both theoretical and observational aspects. Fragmented Energy Release in Sun and Stars: the Interface between MHD and Plasma Physics is for researchers in the fields of solar physics, stellar astrophysics and (laboratory) plasma physics and is a useful resource book for graduate level astrophysics courses.
Since its launch in 1991, the Yohkoh satellite has been returning unprecedented observations of solar flares and the dynamic solar corona. This book is a collection of papers presented at a meeting held in: Yoyogi, Tokyo, on the occasion of Yohkoh's fifth anniversary of operation. The papers constitute a summary of observations and results over the five years, including contributions based on data from Yohkoh's hard and soft X-ray telescopes and its spectrometer experiments. The five years of data, covering approximately one-half of a solar cycle, reveal a fresh perspective on solar science, with a new picture of solar flares and the active Sun emerging. Also, for the first time there are extensive results from Yohkoh observations of the Sun during the solar minimum period. This wide-ranging volume will be of interest to workers in solar physics and X-ray astronomy. It also contains material appropriate for supplemental reading for graduate students in solar physics. |
You may like...
Exploring Quantum Mechanics - A…
Victor Galitski, Boris Karnakov, …
Hardcover
R6,101
Discovery Miles 61 010
|