![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Atomic & molecular physics
Atomic physics has played a central role in the development of modern physics. Progress was based on newly invented scientific methods and experimental tools and today these techniques are successfully employed in a wide variety of highly active areas in modern research, extending from investigations of most fundamental interactions in physics to experiments related to topics in applied sciences and technical aspects. With steadily increasing importance they are found in areas well outside of classical atomic physics in fields such as nuclear and particle physics, metrology, physics of condensed matter and surfaces, physical chemistry, chemistry, medicine and environmental research. This book gives a thorough survey of the methods and techniques in key experiments of interdisciplinary research.
In this volume seven leading theoreticians and experimenters review the origin of the asymmetry of matter and antimatter in the Big Bang, solar neutrinos, the physics of enormous densities and temperatures in stars and of immense magnetic fields around collapsed stars, strong electric fields in heavy ion collisions, and the extreme conditions in quark-gluon plasmas. The articles address nuclear and particle physicists, especially graduate students, but also astrophysicists and cosmologists, since they have to deal with events under the extreme physical conditions discussed here.
In the present edition, a number of new features have been added. First of all, a number of typographical errors that had crept into the text have been corrected. More importantly, a number of new examples, figures and smaller sections have been added. In evaluating the two-body matrix elements which characterize the residual interaction, attention has been paid to the multipole expansion and insight into the importance of various multipoles is presented. The 18 example of 0 is now worked out for all the different angular momentum states in the section on configuration mixing. Some additional comments on how to determine one- and two-body matrix elements in jn configurations, on isospin and the application of isospin to the study of light odd-odd nuclei are included. In Chap. 3, a small section on the present use of large-scale shell model calculations and a section on experimental tests of how a nucleon actually moves inside the nucleus (using electromagnetic probing of nucleonic motion) has been added. In Chap. 4, some recent applications of the study of quadrupole motion in jn particle systems (with reference to the Po, Rn, Ra nuclei) are presented. In the discussion of magnetic dipole moments, the effects and importance of collective admixtures are pointed out and discussed. In Chap. 5, some small additions relating to the particle-hole conjugation and to the basic Hartree-Fock theory have been made. In Chap.
Published in honour of Marc Feix this book tries to give a thorough overview of mathematical methods, analytical and numerical techniques and simulations applied to a variety of problems from physics and engineering. The book addresses graduate students, researchers and especially engineers. The main emphasis is to apply the generality of methods to form a coherent and stimulating approach to practical investigations.
Experimental methods employing spin resonance effects (nuclear magnetic resonance and electron spin resonance) are broadly used in molecular science due to their unique potential to reveal mechanisms of molecular motion, structure, and interactions. The developed techniques bring together biologists investigating dynamics of proteins, material science researchers looking for better electrolytes, or nanotechnology scientists inquiring into dynamics of nano-objects. Nevertheless, one can profit from the rich source of information provided by spin resonance methods only when appropriate theoretical models are available. The obtained experimental results reflect intertwined quantum-mechanical and dynamical properties of molecular systems, and to interpret them one has to first understand the quantum-mechanical principles of the underlying processes. This book concentrates on the theory of spin resonance phenomena and the relaxation theory, which have been discussed from first principles to introduce the reader to the language of quantum mechanics used to describe the behaviour of atomic nuclei and electrons. There is a long way from knowing complex formulae to apply them correctly to describe the studied system. The book shows through examples how symbols can be "replaced" in equations by using properties of real systems to formulate descriptions that link the quantities observed in spin resonance experiments with dynamics and structure of molecules.
An international group of outstanding scientists presents a balanced discussion of various controversies in current turbulence theory. Six topics from the present-day approach to turbulence are each introduced by a survey, followed by three commentaries and a panel discussion. This analysis evaluates future developments of theories presently used for understanding and modelling turbulent flows.
Computational Atomic Physics deals with computational methods for calculating electron (and positron) scattering from atoms and ions, including elastic scattering, excitation, and ionization processes. Each chapter is divided into abstract, theory, computer program with sample input and output, summary, suggested problems, and references. An MS-DOS diskette is included, which holds 11 programs covering the features of each chapter and therefore contributing to a deeper understanding of the field. Thus the book provides a unique practical application of advanced quantum mechanics.
My aim in this book has been to give an account of the theoretical methods of analysis of multiphoton processes in atomic physics. In this account I have emphasized systematic methods as opposed to ad hoc approaches. Both perturbative and nonperturbative methods are presented with il- lustrative results of concrete applications. The perturbation theory is the primary tool of analysis of nonresonant multiphoton processes. It is developed here in conjunction with a diagrammatic language and is also renormalized to free it from the unwanted divergences which accompany the ordinary treatment when higher-order corrections are considered. The nonperturbative methods (i.e., methods other than that of power series ex- pansion in the field strength) become particularly important for consistent treatments of problems involving, for example, intermediate resonances, high field strengths, and finite pulse duration. The specifically nonpertur- bative methods for multiphoton transitions are presented in Chapters 6-11. The methods of resolvent equations and of effective Hamiltonians are developed for both the stationary and the time-dependent fields. The densi- ty matrix method is presented in conjunction with the problems of relaxa- tion and of fluctuating fields. The Floquet theory is presented both in the energy domain and in the time domain. Also treated are the methods of continued fractions, recursive iterative equations, and chain Hamiltonians.
Recent years have seen the proliferation of new computer designs that employ parallel processing in one form or another in order to achieve maximum performance. Although the idea of improving the performance of computing machines by carrying out parts of the computation concurrently is not new (indeed, the concept was known to Babbage ), such machines have, until fairly recently, been confined to a few specialist research laboratories. Nowadays, parallel computers are commercially available and they are finding a wide range of applications in chemical calculations. The purpose of this volume is to review the impact that the advent of concurrent computation is already having, and is likely to have in the future, on chemical calculations. Although the potential of concurrent computation is still far from its full realization, it is already clear that it may turn out to be second in importance only to the introduction of the electronic digital computer itself.
Dispersion forces acting on both atoms and bodies play a key role in modern nanotechnology. As demonstrated in this book, macroscopic quantum electrodynamics provides a powerful method for understanding and quantifying dispersion forces in a vast range of realistic scenarios. The basic physical concepts and theoretical steps allow for the derivation of outlined general expressions for dispersion forces. As illustrated by a number of examples, these expressions can easily be used to study forces between objects of various shapes and materials, including effects like material absorption, nontrivial magnetic properties and dynamical forces asssociated with excited systems.
This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of knowledge: plasma and quantum theory. In these chapters, the quantum hydrodynamic model for plasmas, which has continuously evolved over the past decade, will be summarized to include both the development and applications of the method.
This outstanding collection of surveys addresses graduate and predoctoral students. It reports on theoretical research and observational data on active galactic nuclei: The enigma of the nuclei of galaxies with their central "monster" driving the vast range of activity observed in quasars, radio galaxies, Seyferts, starburst galaxies and even our own Galaxy are explored in this volume. Topics covered include: the impact of recent measurements in the infrared and radio region on our knowledge of thenucleus of our Galaxy; the spectra and classification of active galactic nuclei, the properties of their host galaxies, their cosmological distribution and evolution, the role of stars and thehydrodynamics of the interstellar medium in the nuclei; the description of the inner parsec of a standard active galactic nucleus based on direct interpretation of the observations; the infrared activity of galaxies; the physics of radio galaxies and their jets, emphasizing the physics ofgas flow and high-energy particle interactions as well as shock acceleration. These are all discussed in considerable depth and presented inself-contained chapters with exhaustive reference lists of the scientific literature.
This volume gives a comprehensible survey of BL Lac objects: contributors summarize observations on these interesting astrophysical objects and present theoretical models to explain them. Understanding these objects should help to give a better insight into the physics of black holes and relativistic plasmas. Topics addressed cover radio jets expanding at superluminal velocities, possible effects of relativistic jets on interstellar matter, the continuum emission over the whole electromagnetic system and its variability, and the impact of these observations on gravitational lensing and cosmological evolution. The book should be immensely useful for graduate students.
Scattering theory is of interest to physicists and to chemists and has a wide variety of applications, but it also presents a considerable challenge to mathematicians, including numerical analysts. Within the Schroedinger picture in this volume are collected the various theoretical and mathematical treatments of scattering together with a host of reviews of its applications to atomic and nuclear physics, to surface physics and chemistry, for example trapping of atoms on surfaces, and to amorphous condensed systems. The reviews give a concise and pedagogically useful presentation of the state of the art, and may serve as introductions for newcomers, in particular for graduate students.
This monograph gives a detailed introductory exposition of research results for various models, mostly two-dimensional, of directed walks, interfaces, wetting, surface adsorption (of polymers), stacks, compact clusters (lattice animals), etc. The unifying feature of these models is that in most cases they can be solved analytically. The methods used include transfer matrices, generating functions, recurrence relations, and difference equations, and in some cases involve utilization of less familiar mathematical techniques such as continued fractions and q-series. The authors emphasize an overall view of what can be learned generally of the statistical mechanics of anisotropic systems, including phenomena near surfaces, by studying the solvable models. Thus, the concept of scaling and, where known, finite-size scaling properties are elucidated. Scaling and statistical mechanics of anisoptropic systems in general are active research topics. The volume provides a comprehensive survey of exact model results in this field.
It is perhaps surprising that a process which was one of the first to be studied on an atomic scale, and a process which first received attention over seven decades ago, continues to be the object of diverse and intense research efforts. Such is the case with the (seemingly) conceptually simple and familiar mechanism of electron impact ionization of atoms, molecules, and ions. Not only has the multi-body nature of the collision given ground to theoretical effort only grudgingly, but also the variety and subtlety of processes contributing to ionization have helped insure that progress has come only with commensurate work: no pain - no gain. Modern experimental methods have made it possible to effectively measure and explore threshold laws, differential cross sections, partial cross sections, inner-shell ionization, and the ionization of unstable species such as radicals and ions. In most instances the availability of experimental data has provided impetus and guidance for further theoretical progress."
The volume consists of up-to-date reviews and a selection of contributed papers on subjects including the structure and physical properties of molecular clouds, their role in the star formation process, their dust and chemical properties, molecular cloud surveys of the Milky Way, cloud evolution, problems in cloud mass determinations (a panel discussion and review), the CO properties of external galaxies, nuclei of galaxies as revealed by molecular observations, and galactic spiral structure as reflected by molecular cloud distributions. The abstracts of poster papers on these topics presented at the conference are also included. This book is both a valuable reference and a compendium of current knowledge in this field. It should be of special interest to all students and researchers who work on the physics of star formation, the interstellar medium, molecular clouds and galactic structure.
This book begins with a very readable survey "The Sun Today" by J.-C. Pecker. It is followed by thorough reviews from leading experts covering theory and observations. The focus shifts from the solar core, studied via neutrino emissions and helioseismology, through the interface regions where it is believed the large-scale magnetic fields are generated, to the corona, where most of the high temperature phenomena characteristic of this region may be studied directly. As energetic particles play such a vigorous role in this part of the sun, a separate session was devoted to their transport and storage in the corona.
The book aims to give an overview of the previous Sitges Conferences, which have been held during the last 25 years, with special emphasis on topics related to non-equilibrium phenomena. It includes review articles and articles dealing with new trends in the subject, written by scientists who have played an important role in the development of this area. The book is intended as a commemorative edition of the Sitges Conferences. Graduate students of physics and researchers will find this a stimulating account of the development of non-equilibrium statistical mechanics in the last years, covering a wide scope of topics: kinetic theory, hydrodynamics, fluctuation phenomena and stochastic processes, relaxation phenomena, kinetics of phase transitions, growth kinetics, and so on.
Quantum many-body theories have become an essential tool for all physicists. The field is interdisciplinary, predicting the properties of macroscopic matter based on the fundamental interactions between the elementary constituents. This book presents a systematic and pedagogical approach to the coupled cluster method, correlated basis function theory and Monte Carlo methods. These topics are widely recognized and provide the most powerful and widely applicable theories of all available formulations of QMBT. As the future evolution of QMBT depends to a large measure on establishing links between these different methods, the authors discuss hyprid procedures that can build even further upon the huge strengths and great advantages of each theory.
Measuring the hydrogen content in materials is important both for research and for various applications in material and surface sciences, such as hydrogen embrittlement of steel, controlled thermonuclear reaction first wall studies, and changed material properties caused by dissolved hydrogen. Hydrogen is the most difficult atomic species to analyze by traditional methods, but nuclear physics methods are particularly suited for this purpose. President of the Uzbek SSR Academy of Sciences P.K. Khabibullaev and Professor B.G. Skorodumov discuss in this book the characteristics of these methods, such as lower detection limits, selectivity in respect to different isotopes, accuracy, depth resolution and maximum detection depth. Examples of applications that are dealt with include the determination of material humidity, the dating of objects, the study of hydrogen diffusion including non-stationary processes, and the investigation of changes in material properties like superconductivity, plasticity and electrical properties due to contamination by hydrogen.
|
You may like...
Sociability, Social Capital, and…
Ian Gillespie Cook, Jamie P Halsall, …
Hardcover
Communicating in Groups and Teams…
Joann Keyton, Stephenson Beck
Paperback
R2,854
Discovery Miles 28 540
The Gunsmith's Manual; a Complete…
J Parish (James Parish) Stelle, William B Joint Author Harrison
Hardcover
R923
Discovery Miles 9 230
|