![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Atomic & molecular physics
Nuclear physics is an exciting, broadly faceted field. It spans a wide range of topics, reaching from nuclear structure physics to high-energy physics, astrophysics and medical physics (heavy ion tumor therapy). New developments are presented in this volume and the status of research is reviewed. A major focus is put on nuclear structure physics, dealing with superheavy elements and with various forms of exotic nuclei: strange nuclei, very neutron rich nuclei, nuclei of antimatter. Also quantum electrodynamics of strong fields is addressed, which is linked to the occurrence of giant nuclear systems in, e.g., U+U collisions. At high energies nuclear physics joins with elementary particle physics. Various chapters address the theory of elementary matter at high densities and temperature, in particular the quark gluon plasma which is predicted by quantum chromodynamics (QCD) to occur in high-energy heavy ion collisions. In the field of nuclear astrophysics, the properties of neutron stars and quark stars are discussed. A topic which transcends nuclear physics is discussed in two chapters: The proposed pseudo-complex extension of Einstein's General Relativity leads to the prediction that there are no black holes and that big bang cosmology has to be revised. Finally, the interdisciplinary nature of this volume is further accentuated by chapters on protein folding and on magnetoreception in birds and many other animals.
The aim of this primer is to cover the essential theoretical information, quickly and concisely, in order to enable senior undergraduate and beginning graduate students to tackle projects in topical research areas of quantum fluids, for example, solitons, vortices and collective modes. The selection of the material, both regarding the content and level of presentation, draws on the authors analysis of the success of relevant research projects with newcomers to the field, as well as of the students feedback from many taught and self-study courses on the subject matter. Starting with a brief historical overview, this text covers particle statistics, weakly interacting condensates and their dynamics and finally superfluid helium and quantum turbulence. At the end of each chapter (apart from the first) there are some exercises. Detailed solutions can be made available to instructors upon request to the authors.
In this thesis, the measurement of double-spin asymmetry for electron production from heavy flavor decays was performed in a Relativistic Heavy Ion Collider (RHIC) in the PHENIX experiment at Brookhaven National Laboratory to measure the polarized parton distribution function of gluon in the small Bjorken x region (x~0.01). Â For this experiment, for the first time a Hadron Blind Detector (HBD), which is a position-sensitive gas Cherenkov counter with Gas Electron Multiplier whose surface is evaporated by CsI, was employed. This HBD contributes to reducing the background from electron pairs produced by real and virtual photon conversion. Furthermore, the author develops a new analysis method for the background reduction, and the signal-to-background ratio is improved by a factor of roughly 2.0. Using the combination of the HBD and a new analysis method, the double-spin asymmetry of the electron production with transverse momentum ranging 0.5 < pT < 3.0 GeV/c is measured and confirmed to be zero-consistent within the limit of the statistical uncertainty of about 1%. This result identifies the constraint of the gluon polarization in the small Bjorken x region, a worldwide first.
This monograph forms an interdisciplinary study in atomic, molecular, and quantum information (QI) science. Here a reader will find that applications of the tools developed in QI provide new physical insights into electron optics as well as properties of atoms & molecules which, in turn, are useful in studying QI both at fundamental and applied levels. In particular, this book investigates entanglement properties of flying electronic qubits generated in some of the well known processes capable of taking place in an atom or a molecule following the absorption of a photon. Here, one can generate Coulombic or fine-structure entanglement of electronic qubits. The properties of these entanglements differ not only from each other, but also from those when spin of an inner-shell photoelectron is entangled with the polarization of the subsequent fluorescence. Spins of an outer-shell electron and of a residual photoion can have free or bound entanglement in a laboratory.
Extensions to the No-Core Shell Model presents three extensions to the No-Core Shell Model (NCSM) that allow for calculations of heavier nuclei, specifically for the p-shell nuclei. The Importance-Truncated NCSM (IT-NCSM) formulated on arguments of multi-configurational perturbation theory selects a small set of basis states from the initially large basis space in which the Hamiltonian is diagonalized. Previous IT-NCSM calculations have proven reliable, however, there has been no thorough investigation of the inherent error in the truncated IT-NCSM calculations. This thesis provides a detailed study of IT-NCSM calculations and compares them to full NCSM calculations to judge the accuracy of IT-NCSM in heavier nuclei. When IT-NCSM calculations are performed, one often needs to extrapolate the ground-state energy from the finite basis (or model) spaces to the full NCSM model space. In this thesis a careful investigation of the extrapolation procedures was performed. On a related note, extrapolations in the NCSM are commonplace, but up to recently did not have the ultraviolet (UV) or infrared (IR) physics under control. This work additionally presents a method that maps the NCSM parameters into an effective-field theory inspired framework, in which the UV and IR physics are treated appropriately. The NCSM is well-suited to describe bound-state properties of nuclei, but is not well-adapted to describe loosely bound systems, such as the exotic nuclei near the neutron drip line. With the inclusion of the Resonating Group Method (RGM), the NCSM / RGM can provide a first-principles description of exotic nuclei and the first extension of the NCSM.
The book gives an introduction to the field quantization (second quantization) of light and matter with applications to atomic physics. The first chapter briefly reviews the origins of special relativity and quantum mechanics and the basic notions of quantum information theory and quantum statistical mechanics. The second chapter is devoted to the second quantization of the electromagnetic field, while the third chapter shows the consequences of the light field quantization in the description of electromagnetic transitions. In the fourth chapter it is analyzed the spin of the electron, and in particular its derivation from the Dirac equation, while the fifth chapter investigates the effects of external electric and magnetic fields on the atomic spectra (Stark and Zeeman effects). The sixth chapter describes the properties of systems composed by many interacting identical particles by introducing the Hartree-Fock variational method, the density functional theory and the Born-Oppenheimer approximation. Finally, in the seventh chapter it is explained the second quantization of the non-relativistic matter field, i.e. the Schrodinger field, which gives a powerful tool for the investigation of many-body problems and also atomic quantum optics. At the end of each chapter there are several solved problems which can help the students to put into practice the things they learned.
Stefan Nanz investigates the necessity for three multipole families in classical electrodynamics. He shows that by imposing symmetry and parity constraints, it is sufficient to deal with only two multipole families. This implies that the toroidal multipole moments do not represent an independent multipole family, and they only emerge in the long-wavelength limit.
This book is mostly concerned on the experimental research of the nonlinear optical characteristics of various media, low- and high-order harmonic generation in different materials, and formation, and nonlinear optical characterization of clusters. We also demonstrate the inter-connection between these areas of nonlinear optics. Nonlinear optical properties of media such as optical limiting can be applied in various areas of science and technology. To define suitable materials for these applications, one has to carefully analyse the nonlinear optical characteristics of various media, such as the nonlinear refractive indices, coefficients of nonlinear absorption, saturation absorption intensities, etc. Knowing the nonlinear optical parameters of materials is also important for describing the propagation effects, self-interaction of intense laser pulses, and optimisation of various nonlinear optical processes. Among those processes one can admit the importance of the studies of the frequency conversion of coherent laser sources. The area of interest for nonlinear optical characterization of materials is also closely related with new field of nanostructures formation and application during laser-matter interaction. We show how the nonlinear optical analysis of materials leads to improvement of their high-order nonlinear optical response during the interaction with strong laser fields. Ablation-induced nanoparticles formation is correlated with their applications as efficient sources of coherent short-wavelength photons. From other side, recent achievements of harmonic generation in plasmas are closely related with the knowledge of the properties of materials in the laser plumes. All of these studies are concerned with the low-order nonlinear optical features of various materials. The novelty of the approach developed in present book is related with inter-connection of those studies with each other.
Novel coherent light sources such as x-ray free-electron lasers open exciting prospects for the interaction of light with nuclei. The thesis "Coherent Control of Nuclei and X-rays" covers this still-developing field and proposes, in a daring attempt to revolutionize nuclear physics, three innovative schemes for taming nuclei using coherent effects. The theoretical explorations, which address control of nuclear quantum states, a nuclear memory for single photons in future photonic circuits, and optimized concepts for a nuclear clock, make use of new approaches at the borderline between nuclear physics and quantum dynamics. The result is a well written work, impressive in its stimulating style and promising ideas.
This book covers the complete spectrum of the fundamentals of clocked, regenerative comparators, their state-of-the-art, advanced CMOS technologies, innovative comparators inclusive circuit aspects, their characterization and properties. Starting from the basics of comparators and the transistor characteristics in nanometer CMOS, seven high-performance comparators developed by the authors in 120nm and 65nm CMOS are described extensively. Methods and measurement circuits for the characterization of advanced comparators are introduced. A synthesis of the largely differing aspects of demands on modern comparators and the properties of devices being available in nanometer CMOS, which are posed by the so-called nanometer hell of physics, is accomplished. The book summarizes the state of the art in integrated comparators. Advanced measurement circuits for characterization will be introduced as well as the method of characterization by bit-error analysis usually being used for characterization of optical receivers. The book is compact, and the graphical quality of the illustrations is outstanding. This book is written for engineers and researchers in industry as well as scientists and Ph.D students at universities. It is also recommendable to graduate students specializing on nanoelectronics and microelectronics or circuit design.
The IGISOL group at the University of Jyvaskyla studies the properties of nuclei far off the line of beta stability. These studies are performed locally at the Jyvaskyla Ion Guide Isotope Separator On-Line (IGISOL) facility, as well as at a number of other laboratories such as the ISOLDE facility in CERN, at GANIL and in Helmholzzentrum GSI, the location of the future radioactive beam facility FAIR. The group is also actively involved in work to support the development of international future facilities EURISOL and aforementioned FAIR. This book presents carefully selected papers to portrait the work at IGISOL. Previously published in the journals Hyperfine Interactions and European Physical Journal A.
In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of different aspects and scenarios. Macroscopic quantum electrodynamics is applied within the context of dispersion forces. In contrast to the normal-mode quantum electrodynamics traditionally used to study dispersion forces, the new approach allows to consider realistic material properties including absorption and is flexible enough to be applied to a broad range of geometries. Thus general properties of dispersion forces like their non-additivity and the relation between microscopic and macroscopic dispersion forces are discussed. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. In particular, nontrivial magnetic properties of the bodies, bodies of irregular shapes, the role of material absorption, and dynamical forces for excited atoms are discussed. This volume 2 deals especially with quantum electrodynamics, dispersion forces, Casimir forces, asymptotic power laws, quantum friction and universal scaling laws. The book gives both the specialist and those new to the field a thorough overview over recent results in the context of dispersion forces. It provides a toolbox for studying dispersion forces in various contexts.
In 2010, the ALPHA collaboration achieved a first for mankind: the stable, long-term storage of atomic antimatter, a project carried out a the Antiproton Decelerator facility at CERN. A crucial element of this observation was a dedicated silicon vertexing detector used to identify and analyze antihydrogen annihilations. This thesis reports the methods used to reconstruct the annihilation location. Specifically, the methods used to identify and extrapolate charged particle tracks and estimate the originating annihilation location are outlined. Finally, the experimental results demonstrating the first-ever magnetic confinement of antihydrogen atoms are presented. These results rely heavily on the silicon detector, and as such, the role of the annihilation vertex reconstruction is emphasized.
Frank Close, a leading physicist and talented popular science writer, reveals the true story of the cold fusion controversy--a story ignored until now in spite of the glare of publicity surrounding Martin Fleischmann and Stanley Pons. On March 23, 1989, these two Utah scientists held an astonishing press conference, maintaining that they had succeeded, working in secret, in harnessing atomic fusion. What was the basis for their claims to have achieved cold fusion in a test tube in a basement laboratory, while other scientists--using magnets as big as houses and temperatures hotter than those in the center of the sun--were failing to produce as much power as they were using? Why did Fleischmann and Pons proclaim their "discovery" at a news conference, when first announcements of scientific results are almost always made within the scientific community? Why did the full-blown media event inspired by their initial report cause governments to reorient their research programs in hopes of cornering the "new technology"? And why did some scientists recklessly abandon their traditional painstaking methods in haste to be first to prove or discredit the experiment? Acquainted at first hand with investigations of cold fusion on two continents, Close is uniquely qualified to probe the motivations behind Fleischmann's and Pons's startling assertions and to explore the intellectual and political turmoil that surrounded the cold fusion debate. Originally published in 1991. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This thesis explores ultracold quantum gases of bosonic and fermionic atoms in optical lattices. The highly controllable experimental setting discussed in this work, has opened the door to new insights into static and dynamical properties of ultracold quantum matter. One of the highlights reported here is the development and application of a novel time-resolved spectroscopy technique for quantum many-body systems. By following the dynamical evolution of a many-body system after a quantum quench, the author shows how the important energy scales of the underlying Hamiltonian can be measured with high precision. This achievement, its application, and many other exciting results make this thesis of interest to a broad audience ranging from quantum optics to condensed matter physics. A lucid style of writing accompanied by a series of excellent figures make the work accessible to readers outside the rapidly growing research field of ultracold atoms.
The advent of laser cooling of atoms led to the discovery of ultra-cold matter, with temperatures below liquid Helium, which displays a variety of new physical phenomena. Physics of Ultra-Cold Matter gives an overview of this recent area of science, with a discussion of its main results and a description of its theoretical concepts and methods. Ultra-cold matter can be considered in three distinct phases: ultra-cold gas, Bose Einstein condensate, and Rydberg plasmas. This book gives an integrated view of this new area of science at the frontier between atomic physics, condensed matter, and plasma physics. It describes these three distinct phases while exploring the differences, as well as the sometimes unexpected similarities, of their respective theoretical methods. This book is an informative guide for researchers, and the benefits are a result from an integrated view of a very broad area of research, which is limited in previous books about this subject. The main unifying tool explored in this book is the wave kinetic theory based on Wigner functions. Other theoretical approaches, eventually more familiar to the reader, are also given for extension and comparison. The book considers laser cooling techniques, atom-atom interactions, and focuses on the elementary excitations and collective oscillations in atomic clouds, Bose-Einstein condensates, and Rydberg plasmas. Linear and nonlinear processes are considered, including Landau damping, soliton excitation and vortices. Atomic interferometers and quantum coherence are also included.
This volume contains a selection of papers presented at the 10th European Workshop on Quantum Systems in Chemistry and Physics, held in Tunisia, from September 1st to 7th, 2005. The workshop's aim was to bring together chemists and physicists with a common interest in the quantum-mechanical many-body problem. The volume offers unique insights into the fields of quantum chemical methods, molecular structure and spectroscopy, complexes and clusters.
This book deals with all aspects of plasmonics, basics, applications and advanced developments. Plasmonics is an emerging field of research dedicated to the resonant interaction of light with metals. The light/matter interaction is strongly enhanced at a nanometer scale which sparks a keen interest of a wide scientific community and offers promising applications in pharmacology, solar energy, nanocircuitry or also light sources. The major breakthroughs of this field of research originate from the recent advances in nanotechnology, imaging and numerical modelling. The book is divided into three main parts: extended surface plasmons polaritons propagating on metallic surfaces, surface plasmons localized on metallic particles, imaging and nanofabrication techniques. The reader will find in the book: Principles and recent advances of plasmonics, a complete description of the physics of surface plasmons, a historical survey with emphasize on the emblematic topic of Wood's anomaly, an overview of modern applications of molecular plasmonics and an extensive description of imaging and fabrications techniques.
One of the ?rst Computer Science sites in Italy, in recent years, the Friuli region has become a very active hub in Computational Physics and other applications of Informatics to Human and Natural Sciences. In particular the University of Udine has developed a tradition in innovative cross-disciplinary research areas involving Computer Science and Physics, providing digital tools for laboratories such as NASA and CERN. The sixth International Symposium "Frontiers of Fundamental and Compu- tional Physics" (FFP6) aimed at providing a platform for a wide range of phy- cists to meet and share thoughts on the latest trends in various research areas including High Energy Physics, Theoretical Physics, Gravitation and Cosmology, Astrophysics, Condensed Matter Physics, Fluid Mechanics. Such frontier lines were uni?ed by the use of computers as an, often primary, research instrument, or dealing with issues related to information theory. The present Sixth International Symposium in the series wasorganizedatthe UniversityofUdine,Italyfrom26thto29th ofSeptember2004. TheUniversity of in the Udine and the B. M. Birla Science Centre in Hyderabad have collaborated organization of this Symposium and the edition of these Proceedings, under the auspices of their joint initiative the International Institute of ApplicableMat- maticsand InformationSciences. ThecontributionsintheProceedingsaregrouped as follows: * Field Theory, Relativity and Cosmology * Foundations of Physics and of Information Sciences * Nuclear and High-Energy Particle Physics and Astrophysics; Astroparticle Physics * Complex Systems; Fluid Mechanics * New Approaches to Physics Teaching ThisSymposiumhadanattendanceofover100participants. Therewere63- pers/presentations, including 4 introductory invited lectures delivered by the - belLaureatesL. CooperandG. 'tHooft,andbytheeminentphysicistsY.
With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems and in particular to nuclear physics.A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spectroscopy and structure, many-body systems, together with more topical lectures in nuclear physics aimed a providing a broad phenomenological background. Exercises to encourage hands-on experience with parallel computing and data analysis are included."
This book contains the proceedings of the third international workshop on From Parity Violation to Hadronic Structure and More. The many applications of parity violation are way beyond the scope of what Lee and Yang could have imagined fifty years after their proposal. For the physics topics discussed during this workshop, the application of parity violation has become a standard work horse allowing for the extraction of many physics topics in different experiments.
It is the stars, The stars above us, govern our conditions. William Shakespeare, King Lear A Few Words about What, Why and How The structure of the stars in general, and the Sun in particular, has been the subject of extensivescienti?cresearchanddebateforoveracentury.Thediscoveryofquantum theoryduringthe?rsthalfofthenineteenthcenturyprovidedmuchofthetheoretical background needed to understand the making of the stars and how they live off their energysource. Progress in the theoryof stellar structurewasmade through extensive discussions and controversies between the giants of the ?elds, as well as brilliant discoveries by astronomers. In this book, we shall carefully expose the building of the theory of stellar structure and evolution, and explain how our understanding of the stars has emerged from this background of incessant debate. About hundred years were required for astrophysics to answer the crucial ques tions: What is the energy source of the stars? How are the stars made? How do they evolve and eventually die? The answers to these questions have profound im plications for astrophysics, physics, and biology, and the question of how we our selves come to be here. While we already possess many of the answers, the theory of stellar structure is far from being complete, and there are many open questions, for example, concerning the mechanisms which trigger giant supernova explosions. Many internal hydrodynamic processes remain a mystery. Yet some global pictures can indeed be outlined, and this is what we shall attempt to do here.
The field of Atomic and Molecular Physics (AMP) has reached significant advances in high-precision experimental measurement techniques. The area covers a wide spectrum ranging from conventional to new emerging multi-disciplinary areas like physics of highly charged ions (HCI), molecular physics, optical science, ultrafast laser technology etc. This book includes the important topics of atomic structure, physics of atomic collision, photoexcitation, photoionization processes, Laser cooling and trapping, Bose Einstein condensation and advanced technology applications of AMP in the fields of astronomy, astrophysics, fusion, biology and nanotechnology. This book is useful for researchers, professors, graduate, postgraduate and PhD students dealing with atomic and molecular physics. The book has a wide scope with applications in neighboring fields like plasma physics, astrophysics, cold collisions, nanotechnology and future fusion energy sources like ITER (international Thermonuclear Experimental Reactor) Tokomak plasma machine, which need accurate AMP data.
Unravelling the Mystery of the Atomic Nucleus is a history of atomic and nuclear physics. It begins in 1896 with the discovery of radioactivity, which leads to the discovery of the nucleus at the center of the atom. It follows the experimental discoveries and the theoretical developments up to the end of the Fifties. Unlike previous books regarding on history of nuclear physics, this book methodically describes how advances in technology enabled physicists to probe the physical properties of nuclei as well as how the physical laws which govern these microscopic systems were progressively discovered. The reader will gain a clear understanding of how theory is inextricably intertwined with the progress of technology. Unravelling the Mystery of the Atomic Nucleus will be of interest to physicists and to historians of physics, as well as those interested development of science.
The ATLAS detector at the CERN Large Hadron Collider is an apparatus of unprecedented complexity, designed to probe physics in proton-proton collisions at centre-of-mass energies up to 14 TeV. It was installed in its underground cavern at the LHC during the period 2004 to 2008. Testing of individual subsystems began immediately with calibration systems and cosmic rays, and by 2008 full detector systems could be operated with the planned infrastructure, readout, and monitoring systems. Several commissioning runs of the full detector were organized in 2008 and 2009. During these runs the detector was operated continuously for several months with its readout triggered by cosmic ray muons. At the same time, regular calibrations of individual detector systems were made. In the course of these runs, signals from tens of millions of cosmic ray events were recorded. These commissioning runs continued until the first beam-beam collisions in late 2009. This volume is a collection of seven performance papers based on data collected during this commissioning period. Five papers deal with the response of individual detector systems. One paper describes the performance of the simulation infrastructure used to model the detector's response to both cosmic rays and to the later beam-beam collisions. The final paper describes measurements drawing on the integrated performance of several detector systems. It studies lepton identification, the response to low energy electrons, muon energy loss in the calorimeters, missing ET effects, and the combined performance for muons when both the muon spectrometer and the inner tracking detector are used. These papers summarize the studies of the ATLAS detector performance and readiness prior to the start of colliding beam data. They are reprinted from The European Physical Journal C where they were published between summer 2010 and spring 2011. |
You may like...
Dynamics of Information Systems - Theory…
Michael Hirsch, Panos M. Pardalos, …
Hardcover
R2,719
Discovery Miles 27 190
Architecture of Systems Problem Solving
George J. Klir, Doug Elias
Hardcover
R2,701
Discovery Miles 27 010
The 2005 DARPA Grand Challenge - The…
Martin Buehler, Karl Iagnemma, …
Hardcover
R4,112
Discovery Miles 41 120
Nonlinear Approaches in Engineering…
Liming Dai, Reza N. Jazar
Hardcover
R2,770
Discovery Miles 27 700
Complex Networks in Software, Knowledge…
Milos Savic, Mirjana Ivanovic, …
Hardcover
|