![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Atomic & molecular physics
High-energy ion-atom collisions are subject of intense investigation in present-day atomic physics. They give fundamental information on the collision mechanism of ions and atoms, and on their highly excited states. This book includes invited survey talks, and invited contributions, all carefully refereed. The topics covered are electron capture and loss (including ionization), double electron and resonance processes, electron correlation and post-collision interaction effects, collisions of antiparticles with atoms, and so forth.
This monograph forms an interdisciplinary study in atomic, molecular, and quantum information (QI) science. Here a reader will find that applications of the tools developed in QI provide new physical insights into electron optics as well as properties of atoms & molecules which, in turn, are useful in studying QI both at fundamental and applied levels. In particular, this book investigates entanglement properties of flying electronic qubits generated in some of the well known processes capable of taking place in an atom or a molecule following the absorption of a photon. Here, one can generate Coulombic or fine-structure entanglement of electronic qubits. The properties of these entanglements differ not only from each other, but also from those when spin of an inner-shell photoelectron is entangled with the polarization of the subsequent fluorescence. Spins of an outer-shell electron and of a residual photoion can have free or bound entanglement in a laboratory.
The book is devoted to the modern theory and experimental manifestation of Polarization Bremsstrahlung (PB) which arises due to scattering of charged particles from various targets: atoms, nanostructures (including atomic clusters, nanoparticle in dielectric matrix, fullerens, graphene-like two-dimensional atomic structure) and in condensed matter (monocrystals, polycrystals, partially ordered crystals and amorphous matter) The present book addresses mainly researchers interested in the radiative processes during the interaction between fast particles and matter. It also will be useful for post-graduate students specializing in radiation physics and related fields.
Ouverts a I'ensemble de la communaute internationale, les symposia ASTM-EURATOM sur la dosimetrie des rayonnements de reilcteur traitent de tous les sujets de dosimetrie dans tous les systemes a neutron: dosimetrie des experiences en reacteur, codes d'ajustement, precision, etalons et intercomparaison, donnees nucleaires, techniques de mesure, correlation de dommages radio-induits, echauffement nucleaire, etc ...appliques principalement aujourd'hui aux problemes des reacteurs a eau legere, des reacteurs a neutrons rapides et aux systemes a fusion. Les travaux en dosimetrie, tout comme I'ensemble du domaine de I'energie atomique, sont moins caracterises aujourd'hui par des idees scientifiques franchement nouvelles que par la necessite d'echange, de cooperation, de collaboration, appliques a la satisfaction de besoins de type industriel ou quasi-industriel. L'organisation de nos symposia a suivi cette evolution.Nombre de ceux qui y ont participe ont un souvenir emu du ler symposium a Petten en 1975, qui fut une reussite complete.L'organisation et Ie devouement du CCR de Petten y avait beaucoup contribue. Et puis, aussi, c'etait un commencement, c'etait Ie premier de nos symposia ...Les symposia suivants, alternativement aux USA et en EUROPE, a rythme sensiblement bi-annuel, ont du faire face progressivement a un besoin plus grand d'echange et de discussion par petits groupes, ainsi qu'a afflux croissant de propositions de communications de valeur. L'organisation a du s'adapter en consequence. Ce 5eme sy~posium ASTM- EURATOM represente, de part sa belle reussite, une etape importante de cette evolution et un garant de la maturation correspondante.
Atomic cluster physics has evolved into a research field of truly interdisciplinary character. In particular, it has become apparent that phenomena in atomic nuclei have many analogues in atomic clusters. Increasing the interaction between nuclear and cluster physics can thereforeact as stimulus for both communities. The volume contains the Proceedings of a WE-Heraeus workshop on "Nuclear Physics Concepts inAtomic Cluster Physics" held in Bad Honnef (Germany), November 26-29, 1991. Both theoretical and experimental methods and results are discussed in detail, thus providing the first systematic account of the intimate connections between both fields.
An international group of outstanding scientists presents a balanced discussion of various controversies in current turbulence theory. Six topics from the present-day approach to turbulence are each introduced by a survey, followed by three commentaries and a panel discussion. This analysis evaluates future developments of theories presently used for understanding and modelling turbulent flows.
Computational Atomic Physics deals with computational methods for calculating electron (and positron) scattering from atoms and ions, including elastic scattering, excitation, and ionization processes. Each chapter is divided into abstract, theory, computer program with sample input and output, summary, suggested problems, and references. An MS-DOS diskette is included, which holds 11 programs covering the features of each chapter and therefore contributing to a deeper understanding of the field. Thus the book provides a unique practical application of advanced quantum mechanics.
This thesis unifies the dissipative dynamics of an atom, particle or structure within an optical field that is influenced by the position of the atom, particle or structure itself. This allows the identification and exploration of the fundamental 'mirror-mediated' mechanisms of cavity-mediated cooling leading to the proposal of a range of new techniques based upon the same underlying principles. It also reveals powerful mechanisms for the enhancement of the radiation force cooling of micromechanical systems, using both active gain and the resonance of a cavity to which the cooled species are external. This work has implications for the cooling not only of weakly-scattering individual atoms, ions and molecules, but also for highly reflective optomechanical structures ranging from nanometre-scale cantilevers to the metre-sized mirrors of massive interferometers.
"New physics" is an appealing new keyword, not yet devalued by the ravages of inflation. But what has this to do with such an ugly field as plasma physics, steeped in classical physics, mostly outworn, with all its unsolved and ambiguous technological problems and its messy and open ended numerical studies? "New physics" is concerned with quarks, Higgs particles, grand unified theory, super strings, gravitational waves, and the profound basics of cosmology and black holes. It is the field of astonishing quantum effects, demonstrated by the von Klitzing effect and high temperature superconductors. But what can plasma physicists offer, after so many years of expensive and frustrating research to solve the problem of fusion energy? One may suggest that the fascinating research ofchaos with applications to plasma, or the achievements of statistical mechanics applied to plasmas, has something to offer and should be the subject of attention. However, this is not the aim of this book. Complementing the traditional aim of physics, which is to interpret the phenomena of nature by generalizing laws such that exact predictions about new properties and effects can be drawn, this book demonstrates how new physics has been derived over the last 30 years from the state of matter which exists at high temperatures (plasma).
Nuclear reactions at energies near and below the Coulomb barrier have found much interest since unexpectedly large cross sections of fusion for heavy ions were discovered around 1980. This book covers the more important experimental and theoretical aspects such as sub-barrier fusion, sub- and near-barrier transfer, couplings of various reaction channels, neck-formation, the threshold anomaly, spin distributions and fusion of polarized ions. The symposium also included a session devoted to mass spectrometry for fast reaction products.
Semiclassical Theory of Atoms presents a novel approach to theoretical atomic physics. The fundamental quantity in this new, powerful formalism is the effective potential, not the density. The starting point is the highly semiclassical approximation known as the Thomas-Fermi model. It is studied in great detail, and then refined in three steps by adding quantum corrections successively according to their importance. First, the strongly bound electrons are treated in detail. Second, the bulk of electrons is better described by introducing quantum corrections to the Thomas-Fermi treatment and by including the exchange interaction. At this stage, predicted binding energies, for instance, are correct to within a small fraction of a percent. Third, shell effects are introduced. The improved semiclassical treatment is then sufficiently refined to reproduce the systematics of the Periodic Table. It addresses the graduate student with a good knowledge of elementary quantum mechanics.
This brief investigates the diradical character, which is one of the ground-state chemical indices for "bond weakness" or "electron correlation" and which allows researchers to explore the origins of the electron-correlation-driven physico-chemical phenomena concerned with electronic, optical and magnetic properties as well as to control them in the broad fields of physics and chemistry. It then provides the theoretical fundamentals of ground and excited electronic structures of symmetric and asymmetric open-shell molecular systems by using model molecular systems. Moreover, it presents the theoretical design guidelines for a new class of open-shell singlet molecular systems for nonlinear optics (NLO) and singlet fission.
The optical trapping of colloidal matter is an unequalled field of technology for enabling precise handling of particles on microscopic scales, solely by the force of light. Although the basic concept of optical tweezers, which are based on a single laser beam, has matured and found a vast number of exciting applications, in particular in the life sciences, there are strong demands for more sophisticated approaches. This thesis gives an introductory overview of existing optical micromanipulation techniques and reviews the state-of-the-art of the emerging field of structured light fields and their applications in optical trapping, micromanipulation, and organisation. The author presents established, and introduces novel concepts for the holographic and non-holographic shaping of a light field. A special emphasis of the work is the demonstration of advanced applications of the thus created structured light fields in optical micromanipulation, utilising various geometries and unconventional light propagation properties. While most of the concepts developed are demonstrated with artificial microscopic reference particles, the work concludes with a comprehensive demonstration of optical control and alignment of bacterial cells, and hierarchical supramolecular organisation utilising dedicated nanocontainer particles.
Ultra-cold atomic ensembles have emerged in recent years as a powerful tool in many-body physics research, quantum information science and metrology. This thesis presents an experimental and theoretical study of the coherent properties of trapped atomic ensembles at high densities, which are essential to many of the aforementioned applications. The study focuses on how inter-particle interactions modify the ensemble coherence dynamics, and whether it is possible to extend the coherence time by means of external control. The thesis presents a theoretical model which explains the effect of elastic collision of the coherence dynamics and then reports on experiments which test this model successfully in the lab. Furthermore, the work includes the first implementation of dynamical decoupling with ultra-cold atomic ensembles. It is demonstrated experimentally that by using dynamical decoupling the coherence time can be extended 20-fold. This has a great potential to increase the usefulness of these ensembles for quantum computation.
Dispersion forces acting on both atoms and bodies play a key role in modern nanotechnology. As demonstrated in this book, macroscopic quantum electrodynamics provides a powerful method for understanding and quantifying dispersion forces in a vast range of realistic scenarios. The basic physical concepts and theoretical steps allow for the derivation of outlined general expressions for dispersion forces. As illustrated by a number of examples, these expressions can easily be used to study forces between objects of various shapes and materials, including effects like material absorption, nontrivial magnetic properties and dynamical forces asssociated with excited systems.
Marco Schroeter investigates the influence of the local environment on the exciton dynamics within molecular aggregates, which build, e.g., the light-harvesting complexes of plants, bacteria or algae by means of the hierarchy equations of motion (HEOM) method. He addresses the following questions in detail: How can coherent oscillations within a system of coupled molecules be interpreted? What are the changes in the quantum dynamics of the system for increasing coupling strength between electronic and nuclear degrees of freedom? To what extent does decoherence govern the energy transfer properties of molecular aggregates?.
The book is a comprehensive edition which considers the interactions of atoms, ions and molecules with charged particles, photons and laser fields and reflects the present understanding of atomic processes such as electron capture, target and projectile ionisation, photoabsorption and others occurring in most of laboratory and astrophysical plasma sources including many-photon and many-electron processes. The material consists of selected papers written by leading scientists in various fields.
PAVI09 Proceedings of the 4th International Workshop "From Parity Violation to Hadronic Structure and more..." held in Bar Harbor, Maine, USA, 22-26 June 2009 Main topic: Parity Violation in the Electro-Weak Interactions and Other Low-Energy Tests of the Standard Model, including: Overview of the experimental program, Strangeness in the nucleon: experiment and theory, Standard Model tests, Hadronic Parity Violation, Probing two-photon exchange effects, Electro-weak radiative corrections involving hadronic structure, Technical developments, Neutrinos, beta decay and electric dipole moments. Reprinted from Hyperfine Interactions Vol. 200:1-3 and Vol. 201:1-3 .
This textbook is intended as an introduction to the physics of solar and stellar coronae, emphasizing kinetic plasma processes. It is addressed to observational astronomers, graduate students, and advanced undergraduates without a ba- ground in plasma physics. Coronal physics is today a vast field with many different aims and goals. So- ing out the really important aspects of an observed phenomenon and using the physics best suited for the case is a formidable problem. There are already several excellent books, oriented toward the interests of astrophysicists, that deal with the magnetohydrodynamics of stellar atmospheres, radiation transport, and radiation theory. In kinetic processes, the different particle velocities play an important role. This is the case when particle collisions can be neglected, for example in very brief phenomena - such as one period of a high-frequency wave - or in effects produced by energetic particles with very long collision times. Some of the most persistent problems of solar physics, like coronal heating, shock waves, flare energy release, and particle acceleration, are likely to be at least partially related to such p- cesses. Study of the Sun is not regarded here as an end in itself, but as the source of information for more general stellar applications. Our understanding of stellar processes relies heavily, in turn, on our understanding of solar processes. Thus an introduction to what is happening in hot, dilute coronae necessarily starts with the plasma physics of our nearest star.
Quantum correlations are not restricted to the well known entanglement investigated in Bell-type experiments. Other forms of correlations, for example quantum discord, have recently been shown to play an important role in several aspects of quantum information theory. First experiments also support these findings. This book is an introduction into this up-and-coming research field and its likely impact on quantum technology. After giving a general introduction to the concept of quantum correlations and their role in quantum information theory, the author describes a number of pertinent results and their implications.
The Rationale for the Present Book Perhaps the most critical problem facing present-day particle physicistsis to delineate the relationship between classical and quantum systems. This relationship has many facets. Particle-waveduality is one. The concept of the point particle is another. And theconcept of particle mass is yet another. The electron, as the lightest of the charged particles, represents a fundamental "ground state,"and many of the essential problems in the murky area between the domainsofclassical and quantum physics can be brought into focus by studyingjust this one particle. Thus the present book is centered on questions that arise in connection with the electron, and in particular with its mass, which has remained an unsolved, and indeed almost unexplored, mystery. Each student ofphysics, beginner and professional alike, has to fashion for himselfa way of thinking about the electron. If, after reading this book, the reader views this topic somewhat differently than before, the efforts of the author will have been amply rewarded. When physicists were confronted with the properties of the electron, they made a conceptualleap into the unknown: they concluded that the electron does not obey classical laws with respect to mechanics (as connected to the spin of the electron), and also with respect to electrodynamics (as connected to the magnetic moment of the electron).
This book has come into being as a result of scientific debates. And these debates have determined its structure. The first chapter is in the form of Socratic dialogues between a mathematician (MATH.), two physicists (pHYS. and EXP.) and a philosopher (PHIL.). However, although one of the authors is a theoretical physicist and the other a mathematician, the reader must not think that their opinions have been divided among the participants of the dialogues. We have tried to convey the inner tension of the topic under discussion and its openness. The attitudes of the participants reflect more the possible evaluations of the situation rather than the actual views of the authors. What is more, the subject "elementary particles" as dealt with in the 3 6 dialogue stretches over (2-3) 10 years of historical time and a space of 10 +/-1 pages of scientific literature. For this reason, a complete survey of it is un achievable. But, of course, every researcher constructs his own history of his science and sees a certain list of its main pOints. We have attempted to float several possible pictures of this kind. Therefore the fact that Math and Phys talk about the history of element ary particles is not an attempt to present the scientific history of this realm of physics.
Advanced experimental techniques make quantum optics one of the most active fields in probing the fundamental laws of quantum theory. The contributions collected in this volume, by both theoreticians and experimentalists, give an overview of the most recent developments in fundamental quantum optics. Of particular interest is the physics of cooled and trapped particles. Other topics include atomic interferometry, quantum electrodynamics in a cavity, quantum measurement and much more. The level of presentation makes this book intelligible not only to the expert but also to a wide readership from engineering and physics.
At this Obergurgl seminar, theoreticians and experimentalists discussed recent developments in laser interactions. This volume contains the texts of invited lectures and abstracts of contributed papers. The main topics discussed are: * multiphoton ionization * above-threshold ionization * collisions in strong fields * atoms in intense fields * chaos in radiative interactions * electron correlations in multiphoton processes * Rydberg atoms in external fields * other laser interactions. Thus a broad and up-to-date account of laser interactions is given which will be of interest to scientists, engineers and graduate students. |
You may like...
Exploring Quantum Mechanics - A…
Victor Galitski, Boris Karnakov, …
Hardcover
R6,101
Discovery Miles 61 010
|