![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Atomic & molecular physics
The principal goal of this book is to provide state-of-the-art coverage of the non-relativistic three- and four-body theories at intermediate and high energy ion-atom and ion-molecule collisions. The focus is on the most frequently studied processes: electron capture, ionization, transfer excitation and transfer ionization. The content is suitable both for graduate students and experienced researchers. For these collisions, the literature has seen enormous renewal of activity in the development and applications of quantum-mechanical theories. This subject is of relevance in several branches of science and technology, like accelerator-based physics, the search for new sources of energy and high temperature fusion of light ions. Other important applications are in life sciences via medicine, where high-energy ion beams are used in radiotherapy for which a number of storage ring accelerators are in full operation, under construction or planned to be built worldwide. Therefore, it is necessary to review this field for its most recent advances with an emphasis on the prospects for multidisciplinary applications.
Electron collisions with atoms, ions, and molecules have been investigated since the earliest years of the last century because of their pervasiveness and importance in fields ranging from astrophysics and plasma physics to atmospheric and condensed matter physics. Written in an accessible yet rigorous style, this book introduces the theory of electron-atom scattering into both the non-relativistic and relativistic quantum frameworks. The book also includes exercises with an increasing degree of difficulty to allow the reader to become familiar with the subject.
Intended to provide scientists and engineers at synchrotron radiation facilities with a sound and convenient basis for designing beamlines for monochromatic soft x-ray radiation, this text will also be helpful to the users of synchrotron radiation who want to help ensure that beamlines being built are optimized for the experiments to be performed on them. The primary purpose of a beamline is to capture as much of the light of the source as possible and then to transfer the desired portion of that light as completely as possible to the experiment. With the development of dedicated, brilliant synchrotron radiation sources, the first half of the task has been greatly simplified. The beamline designer must contend with the second half of the problem -- conserving the brilliance of the source through an optical system which monochromatizes and focuses the radiation.
The application of nuclear physics methods is now widespread
throughout physics, chemistry, metallurgy, biology, clinical
medicine, geology, and archaeology. Accelerators, reactors, and
various instruments that have developed together with nuclear
physics have often been found to offer the basis for increasingly
productive and more sensitive analytical techniques.
Computational Atomic Structure: An MCHF Approach deals with the field of computational atomic structure, specifically with the multiconfiguration Hartree-Fock (MCHF) approach and the manner in which this approach is used in modern physics. Beginning with an introduction to computational algorithms and procedures for atomic physics, the book describes the theory underlying nonrelativistic atomic structure calculations (making use of Brett-Pauli corrections for relativistic effects) and details how the MCHF atomic structure software package can be used to this end. The book concludes with a treatment of atomic properties, such as energy levels, electron affinities, transition probabilities, specific mass shift, fine structure, hyperfine-structure, and autoionization. This modern, reliable exposition of atomic structure theory proves invaluable to anyone looking to make use of the authors' MCHF atomic structure software package, which is available publicly via the Internet.
Computational Atomic Structure: An MCHF Approach deals with the field of computational atomic structure, specifically with the multiconfiguration Hartree-Fock (MCHF) approach and the manner in which this approach is used in modern physics. Beginning with an introduction to computational algorithms and procedures for atomic physics, the book describes the theory underlying nonrelativistic atomic structure calculations (making use of Brett-Pauli corrections for relativistic effects) and details how the MCHF atomic structure software package can be used to this end. The book concludes with a treatment of atomic properties, such as energy levels, electron affinities, transition probabilities, specific mass shift, fine structure, hyperfine-structure, and autoionization. This modern, reliable exposition of atomic structure theory proves invaluable to anyone looking to make use of the authors' MCHF atomic structure software package, which is available publicly via the Internet.
The authors expound on non-traditional phenomena for transfer theory, which are nevertheless of considerable interest in wave measurements, and bring the advances of transfer theory as close as possible to the practical needs of those working in all areas of wave physics. The book opens with a historical overview of the topic, then moves on to examine the phenomenological theory of radiative transport, blending traditional theory with original ideas. The transport equation is derived from first principles, and the ensuing discussion of the diffraction content of the transport equation and non-classical radiometry is illustrated by practical examples from various fields of physics. Popular techniques of solving the transport equation are discussed, paying particular attention to wave physics and computing the coherence function. The book also examines various problems which are no longer covered by the traditional radiative transfer theory, such as enhanced backscattering and weak localization phenomena, nonlinear transport problems and kinetic equations for waves. This monograph bridges the gap between the simple power balance description in radiative transfer theory and modern coherence theory. It will be of interest to researchers and professionals working across a wide range of fields from optics, acoustics and radar theory to astrophysics, radioastronomy and remote sensing, as well as to students in these areas.
This book addresses various aspects of physics, using Quantum oscillation (QO) as a common denominator. QO plays an important role in many aspects of physics, such as the Weinberg angle, Caribbo angle, neutrino oscillation, K0 oscillation and CP violation, mass generation by the Higgs field, hadron mass pattern, lepton anomalous magnetic moment, spin precession, hydrogen HI line, etc. Usually, these subjects are taught separately. As such, this book allows readers to learn about a wide range of physics subjects in a unified manner and to gain farther-reaching perspectives. The readers may be surprised at the fact that different looking physics are actually closely related with each other. They will also find essential information on quantum mechanics at the heart from many concrete examples. Though the book is mainly intended for graduate students of particle, nuclear and astrophysics, undergraduate students and researchers will also benefit from the content.
Management of Naturally Occurring Radioactive Materials - known in the industry as NORM -has become an important part of the regular training required for workers in oil and gas production, refinery and petrochemical manufacturing, and in certain types of mining. Proper handling of NORM-contaminated wastes and use of appropriate radiation detection and protective equipment are now understood to be important components of good worker safety programs. Until now, no practical, easy-to-read, book was available to supplement worker training courses on NORM management. Naturally Occurring Radioactive Materials: Principles and Practices fills this void by providing, in a single publication, an ideal reference for industry managers, supervisors and line personnel. The book stresses the proper handling and management of NORM contaminated wastes and provides a firm understanding of the chemical properties of radioactive agents, their toxicological effects, and the appropriate containerization and disposal methods for these materials.
There is considerable interest, both fundamental and technological, in the way atoms and molecules interact with solid surfaces. Thus the description of heterogeneous catalysis and other surface reactions requires a detailed understand ing of molecule-surface interactions. The primary aim of this volume is to provide fairly broad coverage of atoms and molecules in interaction with a variety of solid surfaces at a level suitable for graduate students and research workers in condensed matter physics, chemical physics, and materials science. The book is intended for experimental workers with interests in basic theory and concepts and had its origins in a Spring College held at the International Centre for Theoretical Physics, Miramare, Trieste. Valuable background reading can be found in the graduate-Ievel introduction to the physics of solid surfaces by ZangwilI(1) and in the earlier works by Garcia Moliner and F1ores(2) and Somorjai.(3) For specifically molecule-surface interac tions, additional background can be found in Rhodin and Ertl(4) and March.(S) V. Bortolani N. H. March M. P. Tosi References 1. A. Zangwill, Physics at Surfaces, Cambridge University Press, Cambridge (1988). 2. F. Garcia-Moliner and F. Flores, Introduction to the Theory of Solid Surfaces, Cambridge University Press, Cambridge (1979). 3. G. A. Somorjai, Chemistry in Two Dimensions: Surfaces, Cornell University Press, Ithaca, New York (1981). 4. T. N. Rhodin and G. Erd, The Nature of the Surface Chemical Bond, North-Holland, Amsterdam (1979). 5. N. H. March, Chemical Bonds outside Metal Surfaces, Plenum Press, New York (1986)."
This book deals specifically with the manipulation of atoms by laser light, describing the focusing, channeling and reflection of atoms by laser fields. It also describes the potential fields required to cause the phase change of the wave function necessary for the atomic interactions to occur.
During the last two decades, the theory of ion-atom collisions, and particularly of charge-exchange reactions, has advanced rapidly to the point where existing texts are no longer suitable as an introduction to the subject. This book aims to remedy the situation by providing an account of modern theoretical methods used to study the interaction of positive ions with atoms (or ions), concentrating particularly on charge-exchange reactions. These reactions cannot be studied in isolation, and it is necessary to consider to some extent, the whole range of ion-atom collisions leading to elastic scattering, excitation, and ionization. The material is presented at a level suitable for beginning research students and is self-contained, but assumes a knowledge of undergraduate quantum mechanics and atomic physics. It will also be useful for experimentalists who wish to assess the status of theoretical treatments of those collision processes in which they are interested.
This book offers a compact overview on crystallography, symmetry, and applications of symmetry concepts. The author explains the theory behind scattering and diffraction of electromagnetic radiation. X-ray diffraction on single crystals as well as quantitative evaluation of powder patterns are discussed.
This book introduces readers to basic approaches in and principles of marine nuclear power design, including overall reactor design, in-core design, coolant systems and devices, I&C system design, safety system design, and dynamic analysis assessment. It comprehensively reviews both the fundamentals of and latest trends in nuclear-powered devices, covering their entire lifespan, from design and testing to operation and decommissioning. Further, it explores in detail various real-world conditions in the marine context - such as insufficient space for equipment deployment and frequently changing operating conditions as well as swinging and tilting. Offering extensive information on the design and operation of marine nuclear power systems, the book is a valuable resource for researchers and professionals in the area of marine science and nuclear engineering, and graduate students intending to embark on a career in the field.
This important book presents on approach to understanding the atomic nucleus that exploits simple algebraic techniques. The book focuses primarily on a panicular algebraic model, the Interacting Boson Model (IBM); ft outlines the algebraic structure, or group theoretical basis, of the IBM and other algebraic models using simple examples. Both the compa6son of the IBM with empirical data and its microscopic basis are explored, as are extensions to odd mass nuclei and to phenomena not originally encompassed within its purview. An important final chapter treats fermion algebraic approaches to nuclear structure which can be both more microscopic and more general, and which represent Promising avenues for future research. Each of the contributors to this work is a leading expert in the field of algebraic models; together they have formulated an introduction to the subject which will be an important resource for the series graduate student and the professional physicist alike.
Quantum logic gates are the crucial information-processing operation of quantumcomputers. Two crucial performance metrics for logic gates are their precision andspeed. Quantum processors based on trapped ions have always been the touchstonefor gate precision, but have suffered from slow speed relative to other quantum logicplatforms such as solid state systems. This thesis shows that it is possible to acceleratethe logic "clock speed" from kHz to MHz speeds, whilst maintaining a precision of99.8%. This is almost as high as the world record for conventional trapped-ion gates,but more than 20 times faster. It also demonstrates entanglement generation in atime (480ns) shorter than the natural timescale of the ions' motion in the trap, whichstarts to probe an interesting new regime of ion trap physics. In separate experiments, some of the first "mixed-species" quantum logic gates areperformed, both between two different elements, and between different isotopes.The mixed-isotope gate is used to make the first test of the quantum-mechanical Bellinequality between two different species of isolated atoms.
This book focuses on the equation of state (EoS) of compact stars, particularly the intriguing possibility of the "quark star model." The EoS of compact stars is the subject of ongoing debates among astrophysicists and particle physicists, due to the non-perturbative property of strong interaction at low energy scales. The book investigates the tidal deformability and maximum mass of rotating quark stars and triaxially rotating quark stars, and compares them with those of neutron stars to reveal significant differences. Lastly, by combining the latest observations of GW170817, the book suggests potential ways to distinguish between the neutron star and quark star models.
Commentaries by the editors to this comprehensive anthology in the area of physics-based vision put the papers in perspective and guide the reader to a thorough understanding of the basics of the field. Paper Topics Include: - Intensity Reflection Models - Polarization and Refraction - Camera Calibration - Quantization and Sampling - Depth from Optics - Automated Camera Control
This book compiles the accomplishments of the recent research project on photochemistry "Photosynergetics", supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan, aiming to develop and elucidate new methods and molecules leading to advanced utilization of photo-energies. Topics include photochemical responses induced by multiple excitation, multiphoton absorption, strong modulation of electronic states, developments of new photofunctional molecules, mesoscopic actuations induced by photoexcitation, and novel photoresponses in molecules and molecular assemblies. The authors stress that these approaches based on the synergetic interaction among many photons and many molecules enable the expansion of the accessibility to specific electronic states. As well, they explain how the development of reaction sequences and molecules/molecular assemblies ensure "additivity" and "integration" without loss of the photon energy, leading to new photoresponsive assemblies in meso- and macroscopic scales.
With contributions by leading theoreticians, this book presents the discoveries of hitherto hidden connections between seemingly unrelated fields of fundamental physics. The topics range from cosmology and astrophysics to nuclear-, particle- and heavy-ion science. A current example concerns the sensitivity of gravitational wave spectra to the phase structure of dense nuclear and quark matter in binary neutron star collisions. The contributions by Hanauske and Stoecker as well as Banik and Bandyopadhyay relate the consequent insights to hot dense nuclear matter created in supernova explosions and in high-energy heavy-ion collisions. Studies of the equation of state for neutron stars are also presented, as are those for nuclear matter in high-energy heavy-ion collisions. Other reviews focus on QCD-thermodynamics, charmed mesons in the quark-gluon plasma, nuclear theory, extensions to the standard general theory of relativity, new experimental developments in heavy ion collisions and renewable energy networks. The book will appeal to advanced students and researchers seeking a broad view of current challenges in theoretical physics and their interconnections.
This new edition of our 2016 book provides insight into designing intelligent materials and structures for special application in engineering. Literature is updated throughout and a new chapter on optics fibers has been added. The book discusses simulation and experimental determination of physical material properties, such as piezoelectric effects, shape memory, electro-rheology, and distributed control for vibrations minimization.
The book includes several topics as per Universities curriculum of M.Sc. and M.Phil. course work in Chemistry. This covers different Physiological aspects of Bioinorganic Chemistry in terms of 4 Chapters with in-depth and up-to-date coverage. The book symmetrically presents (i) Coordination chemistry of chlorophylls/bacteriochlophylls and its functional aspects in photosynthesis, (ii) Complexes containing nitric oxide: Synthesis, reactivity, structure, bonding, and therapeutic aspects of nitric oxide releasing molecules (NORMS) in human beings and plants, (iv) Complexes containing carbon monoxide: Synthesis, reactivity, structure, bonding, and therapeutic aspects of carbon monoxide releasing molecules (CORMS) in human beings and plants, and (iv) Advantageous role of gaseous signaling molecule, H2S: Hydrogen sulphide and their respective donors, in ophthalmic diseases and physiological implications in plants. At the end, three relevant topics are included as appendices for updating students and faculty members.
This book studies the fundamental aspects of many-body physics in quantum systems open to an external world. Recent remarkable developments in the observation and manipulation of quantum matter at the single-quantum level point to a new research area of open many-body systems, where interactions with an external observer and the environment play a major role. The first part of the book elucidates the influence of measurement backaction from an external observer, revealing new types of quantum critical phenomena and out-of-equilibrium dynamics beyond the conventional paradigm of closed systems. In turn, the second part develops a powerful theoretical approach to study the in- and out-of-equilibrium physics of an open quantum system strongly correlated with an external environment, where the entanglement between the system and the environment plays an essential role. The results obtained here offer essential theoretical results for understanding the many-body physics of quantum systems open to an external world, and can be applied to experimental systems in atomic, molecular and optical physics, quantum information science and condensed matter physics.
The content of this book describes in detail the results of the present measurements of the partial and total doubly differential cross sections for the multiple-ionization of rare gas atoms by electron impact. These measurements show, beside other trends, the role of Auger transitions in the production of multiply ionized atoms in the region where the incident electron energy is sufficient to produce inner shell ionization. Other processes like Coster-Kronig transitions and shake off also contribute towards increasing the charge of the ions. The incident electron having energy of 6 keV, for example, in a collision with xenon atom can remove up to nine electrons (*) X-ray-ion coincidence spectroscopy of the electron xenon atom collisions is also described. The present measurements of doubly differential cross sections for the dissociative and non-dissociative ionization of hydrogen, sulfur dioxide and sulfur hexa fluoride molecular gases by electron impact are also described in the text of this book. The results of the measurements for sulfur dioxide molecule show how this major atmospheric pollutant can be removed from the atmosphere by electron impact dissociation of this molecule. The present results of the measurements for sulfur hexa fluoride give an insight into the dissociation properties of this molecular gas, which is being so widely used as a gaseous insulator in the electrical circuits. The book also describes the present measurements of the polarization parameters of the fluorescence radiation emitted by the electron-impact-excited atoms of sodium and potassium. In these investigations the target atoms are polarized, therefore, the measurements of the polarization parameters give information about the electron atom interaction in terms of the interference, direct and exchange interaction channels.
Presenting the proceedings of FPCP 2018, this book reviews the status quo of flavor physics and discusses the latest findings in this exciting area. Flavor physics has been instrumental in the formulation and understanding of the standard model, and it is possible that the direction of new physics will be significantly influenced by flavor sector, also known as the intensity frontier, making it possible to indirectly test the existence of new physics up to a very high scale, beyond that of the energy frontier scale accessible at the LHC. The book is intended for academics around the globe involved in particle physics research, professionals associated with the related technologies and those who are interested in learning about the future of physics and its prospects and directions. |
![]() ![]() You may like...
|