![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Atomic & molecular physics
The aim of the workshop was to bring together specialists in various fields where non-exponential relaxation is observed in order to compare models and experimental results and to examine the general physical principles governing this type of behaviour. Non-exponential relaxation is found in extremely diverse physical systems all of which can be classified as complex. The form of the relaxation is generally parametrized using logarithmic, algebraic or stretched exponential decay forms. The conceptually simplest mechanism for the non-exponential decay is a spectrum of relaxation rates due to non-interacting units each of which relaxes with a different intrinsic time constant. Clear experimental examples can be given where for instance the relaxation of a collection of isolated polymer molecules leads to an overall stretched exponential decay. Non-exponential relaxation is observed in all strongly interacting complex systems (structural glasses, spin glasses, etc ... ) where each elementary unit is in interaction with many other units.
This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water chemistry of supercritical water used as a coolant in nuclear power reactors. It will also help readers to broaden their understanding of fundamental elements of light water cooled reactor technologies and the evolution of reactor concepts.
The physics of open quantum systems plays a major role in modern experiments and theoretical developments of quantum mechanics. Written for graduate students and readers with research interests in open systems, this book provides an introduction into the main ideas and concepts, in addition to developing analytical methods and computer simulation techniques.
This book presents the basics and advanced topics of research of gamma ray physics. It describes measuring of Fermi surfaces with gamma resonance spectroscopy and the theory of angular distributions of resonantly scattered gamma rays. The dependence of excited-nuclei average lifetime on the shape of the exciting-radiation spectrum and electron binding energies in the spectra of scattered gamma rays is described. Resonant excitation by gamma rays of nuclear isomeric states with long lifetime leads to the emission and absorption lines. In the book, a new gamma spectroscopic method, gravitational gamma spectrometry, is developed. It has a resolution hundred million times higher than the usual Moessbauer spectrometer. Another important topic of this book is resonant scattering of annihilation quanta by nuclei with excited states in connection with positron annihilation. The application of the methods described is to explain the phenomenon of Coulomb fragmentation of gamma-source molecules and resonant scattering of annihilation quanta to study the shape of Fermi surfaces of metals.
Gets right to the point with step-by-step guidance on solving physics problems. Covers all topics in standard general physics courses in the same sequence. Keeps learning about physics fun and engaging through the story of dinosaurs being tested on their knowledge for a final challenge (deflecting an asteroid headed to Earth!). Enables the reader to quickly flip through and locate steps needed for a particular problem. Includes tons of easy to follow diagrams and worked solutions.
Scalar Fields in Particle Physics and Cosmology; S. Rudaz. The Quark Mixing Matrix and CP Violation; C. Jarlskog. Pinning Down the Standard Model; F. Dydak. Issues in B Physics; M.V. Danilov. The Search for the Top Quark at the Tevatron; P.L. Tipton. Detection of Dark Matter and Solar Neutrinos; M. Spiro. Recent Developments in Tracking Detectors; D.H. Saxon. Experimental Challenges at Future Hadron Colliders; J. Siegrist. Technical Challenges of the LHC/SSC Colliders; D.A. Edwards. Index.
Opening Lecture.- The Problem of Mass: From Galilei to Higgs.- Quantum Chromo Dynamics.- QCD Phenomenology: Jet Rates and Truncated Parton Cascades for Massive Hadron Production.- Theoretical Lectures from 10 to 200 TeV.- The Standard Model and Beyond.- Do Weak Interactions become Strong at High Energy?.- Geometry and Quantum Symmetries of Superstring Vacua.- A Duality Between Strings and Fivebranes.- Review Lectures.- Theoretical Implications of Precision Electroweak Data.- Novel Neutrino Physics.- A Solution to the Time Varying Solar Neutrino Problem.- Searching for the Higgs Boson at a Photon-Photon Collider.- Experimental Physics at the Highest Energy (in this Century!).- The Future of High Energy Physics.- The SSC Project and Experimental Program.- Maximizing the Luminosity of Eloisatron, a Hadron Supercollider at 100 TeV per Beam.- New Detectors for Supercolliders: LAA.- Closing Ceremony.- Prizes and Scholarships, etc.- Participants.
Introduction; E. Beltrametti, J.M. LevyLeblond. General Reviews: Experiments with Single Atoms in Cavities and Traps; H. Walther. Experiments with Single Atoms, Molecules, or Photons; S. Haroche. Quantum Effects with Ultracold Atoms; Y. Castin, et al. Transfer of Single Electrons and Single Cooper Pairs in Metallic Nanostructures; M.H. Devoret, et al. Interferometry with Particles of Nonzero Rest Mass: Topological Experiments; G.L. Opat. Achievements in Neutron Interferometry; H. Rauch. Electron Interferometry and Holography; A. Tonomura. Quantum Phenomena and Their Applications in Semiconductor Microstructures; F. Capasso. Specific Topics: Quantum Fluctuations and Superconductivity; R. Fazio, A. Tagliacozzo. Spontaneous Localization and Superconductivity; A. Rimini. Photon-Photon Correlations from Single Atoms; M.O. Scully. Einstein Causality in Interatom Microcavity-confined Transverse Quantum Correlations; F. De Martini, M. Giangrasso. Three Comments on the Aharonov-Bohm Effect; M. Berry. Protective Measurements; Y. Aharonov, L. Vaidman. Weak Measurements; L. Vaidman. 8 additional articles. Index.
This is the first volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 1 provides the canonical knowledge in atomic physics together with basics of modern spectroscopy. Starting from the fundamentals of quantum physics, the reader is familiarized in well structured chapters step by step with the most important phenomena, models and measuring techniques. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.
This book looks at global atmospheric processes from a physical standpoint using available current and past observational data taken from measurements of relevant atmospheric parameters. It describes various aspects of the current atmospheric state and its future evolution, focusing primarily on the energetic balance of the Earth and atmosphere, and taking into consideration the multi-faceted global equilibrium between these two systems, carbon, and water. The analysis presented in this book restricts itself to those objects and processes that allow us to obtain reliable conclusions and numerical estimations, in contrast to current climate models with much larger numbers of parameters for describing the same problems. As a result, in spite of the roughness of numerical parameters, the book unveils a reliable and transparent physical picture of energetic phenomena in the global atmosphere. In particular, it shows that approximately only one-fourth of atmospheric water returns from the atmosphere to the Earth in the form of free molecules. It was shown that the contemporary warming of our planet has an anthropogenic character, and that the average global temperature increases due to an increase of the concentration of atmospheric CO2 molecules, via an increase in atmospheric moisture, as well as an increase in the amount of aerosols in the atmosphere. Accumulation of atmospheric carbon dioxide plays a subsidiary role in this process and gives approximately one-third in a change of the global temperature, while an increase in the amount of atmospheric water by as little as only 0.3% per year explains the observed warming of the Earth. The book shows how the greenhouse instability of the atmosphere evidently has its origins in the Eocene epoch, presenting an analysis of the influence of various types of global energetic processes on the climate that differs from the official stance on these problems.
Volume 3 of the 5-volume Quantum Nanochemistry presents the chemical reactivity throughout the molecular structure in general and chemical bonding in particular by introducing the bondons as the quantum bosonic particles of the chemical field, localization, from Huckel to Density Functional expositions, especially in relation to how chemical principles of electronegativity and chemical hardness decide the global chemical reactivity and interaction. The volume presents the fundamental and advanced concepts, principles, and models as well as their first and novel combinations and applications in quantum (physical) chemical theory of bonding, molecular reactivity, and aromaticity.
This book provides a comprehensive description of topological polymers, an emerging research area in polymer science and polymer materials engineering. The precision polymer topology designing is critical to realizing the unique polymer properties and functions leading to their eventual applications. The prominent contributors are led by Principal Editor Yasuyuki Tezuka and Co-Editor Tetsuo Deguchi. Important ongoing achievements and anticipated breakthroughs in topological polymers are presented with an emphasis on the spectacular diversification of polymer constructions. The book serves readers collectively to acquire comprehensive insights over exciting innovations ongoing in topological polymer chemistry, encompassing topological geometry analysis, classification, physical characterization by simulation and the eventual chemical syntheses, with the supplementary focus on the polymer folding, invoked with the ongoing breakthrough of the precision AI prediction of protein folding. The current revolutionary developments in synthetic approaches specifically for single cyclic (ring) polymers and the topology-directed properties/functions uncovered thereby are outlined as a showcase example. This book is especially beneficial to academic personnel in universities and to researchers working in relevant institutions and companies. Although the level of the book is advanced, it can serve as a good reference book for graduate students and postdocs as a source of valuable knowledge of cutting-edge topics and progress in polymer chemistry.
The third book in Theodore Gray's bestselling Elements Trilogy, Reactions continues the journey through the world of chemistry that began with his two previous bestselling books The Elements and Molecules. With The Elements, Gray gave us a never-before-seen, mesmerizing photographic view of the 118 elements in the periodic table. In Molecules, he showed us how the elements combine to form the content that makes up our universe. With Reactions, Gray once again puts his photography and storytelling to work to demonstrate how molecules interact in ways that are essential to our very existence. The book begins with a brief recap of elements and molecules and then goes on to explain important concepts that characterize a chemical reaction, including Energy, Entropy, and Time. It is then organized by type of reaction including chapters such as "Fantastic Reactions and Where to Find Them," "On the Origin of Light and Color," "The Boring Chapter," in which we learn about reactions such as paint drying, grass growing, and water boiling, and "The Need for Speed," including topics such as weather, ignition, and fire.
The Workshop on Nuclear Matter in Different Phases and Transitions, held March 31 - April 10, 1998, brought together both theorists and experimentalists working on the properties of nuclear and hadronic matter produced in heavy-ion collisions in various energy ranges. The main focus was on experimental signals revealing the possible phase changes of the matter, taking into account the finite size of the system, and the non- equilibrium features of the observed phenomena. A discussion of phase transitions in other small quantum systems, such as metallic clusters, or atomic Bose-Einstein condensates was also presented. The papers included in this volume present and review in an understandable and inspiring way the major experimental and theoretical advances in those different communities of physicists addressing similar physics questions, facing similar problems and often using analogous techniques. Audience: This volume will be of interest to postgraduate students and researchers whose work involves nuclear physics, atomic and molecular physics, condensed matter physics, statistical physics, thermodynamics or particle physics.
This book covers polarization, alignment, and orientation effects in atomic collisions induced by electron, heavy particle, or photon impact. The first part of the book presents introductory chapters on light and particle polarization, experimental and computational methods, and the density matrix and state multipole formalism. Examples and exercises are included. The second part of the book deals with case studies of electron impact and heavy particle excitation, electron transfer, impact ionization, and autoionization. A separate chapter on photo-induced processes by new-generation light sources has been added. The last chapter discusses related topics and applications. Part III includes examples of charge clouds and introductory summaries of selected seminal papers of tutorial value from the early history of the field (1925 - 1975). The book is a significant update to the previous (first) edition, particularly in experimental and computational methods, the inclusion of key results obtained during the past 15 years, and the extended coverage of photo-induced processes. It is intended as an introductory text for both experimental and theoretical students and researchers. It can be used as a textbook for graduate courses, as a primary source for special topics and seminar courses, and as a standard reference. The book is accompanied by electronically available copies of the full text of the key papers in Part III, as well as animations of theoretically predicted electron charge clouds and currents for some of the cases discussed in Part II.
The perception of the atomic-scale world has greatly changed since the discovery and development, in the early '80s, of scanning tunneling microscopy by Binnig and Rohrer. Beyond the observation of individual atoms, which is now routine, the concept of playing with atoms has become commonplace. This has led to the fashioning of tools at the atomic scale, to the deposition, the displacement and the creation of atomic structures and also to a knowledge of interactions and contacts between atoms. Nanotips ending with a single atom are sources of ultra-fine charged beams. They can be unique tools for high resolution observations, for microfabrications by micro-machining and deposition at a scale not previously attainable, with a working distance less stringent than with STM devices. These nanosources should then be the starting point for the development of high-performance miniature devices. For all the subjects mentioned above, new laws have been identified and circumscribed in the different articles. These proceedings marked the shift of emphasis from a passive attitude of analysis towards a more active role of the scientist in the creation and use of atomic configurations. (ABSTRACT) This volume contains the proceedings of the NATO Advanced Research Workshop which reviewed the basic principles and highlighted the progress made during the last few years on the atomic scale sources and the interactions between microprobes and samples. The motivation is to use the novel properties attached to the atomic dimensions to develop nanoscale technologies.
Market: Physicists, chemists, biochemists, and biologists. Here's the first book to gather the vast range of experimental data in electron spin resonance (ESR) into a single volume. Concise yet comprehensive, it offers an easy-to-use collection of up-to-date experimental data, methods, and theory. The Handbook includes key contributions from leading scientists and provides over 200 tables and figures. Although specific ESR subfields are covered in numerous books and journals, the Handbook of Electron Spin Resonance is the only comprehensive reference to present extensive tabulation of data and experimental results. The Handbook also provides introductions to theoretical backgrounds, methods, and instrumentation.
This book is about several questions regarding how to describe the quantization of the current density in an antenna and about the nature of the quantum electromagnetic field produced by such a quantum current density. The second quantized current density can be built out of the Dirac field of electrons and positrons while the free electromagnetic or photon field is built out of solutions to the wave equation with coefficients being operators, namely the creation and annihilation operators of the photons. Note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
This fourteenth volume in the Poincare Seminar Series is devoted to Niels Bohr, his foundational contributions to understanding atomic structure and quantum theory and their continuing importance today. This book contains the following chapters: - Tomas Bohr, Keeping Things Open; - Olivier Darrigol, Bohr's Trilogy of 1913; -John Heilbron, The Mind that Created the Bohr Atom; - Serge Haroche & Jean-Michel Raimond, Bohr's Legacy in Cavity QED; - Alain Aspect, From Einstein, Bohr, Schroedinger to Bell and Feynman: a New Quantum Revolution?; - Antoine Browaeys, Interacting Cold Rydberg Atoms: A Toy Many-Body System; - Michel Bitbol & Stefano Osnaghi, Bohrs Complementarity and Kants Epistemology. Dating from their origin in lectures to a broad scientific audience these seven chapters are of high educational value. This volume is of general interest to physicists, mathematicians and historians.
Nuclear Collisions and Structure: Descriptions of Heavy Ion Collisions at Intermediate Energies; E. Lehman. Boltzman Master Equation Theory of Nuclear Reactions; M. Cavinato, et al. Formation and Decay of Hot Nuclei; B. Tamain. Statistical and Dynamical Aspects of Hot Nucleus DeExcitation; M. Gui et, al. Atomic Collisions: New Means and Objectives in the X and XUv Spectroscopy and Imagery; Y. Cauchois. Collisions of Molecules with Clusters; J. Jellinek, Z.B. Guvenc. Theory of Slow Atomic Collisions; F. Masnou-Seeuws. RMatrix Calculation of Multichannel Quantum Defect Parameters in Heavy Alkaline Earth Atoms; M. Aymar. New Phenomena at High Energy Collisions: Renaissance of Interest in Cosmic Rays; H. Rebel. The Sharp Lepton Problem and the C(Q0) Scenario; J.J. Griffin. Electromagnetic and Mesonic Cherenkov Effects in Nuclear Media; W. Stocker, D.B. Ion. 16 additional articles. Index.
This book surveys recent advances related to the application of single molecule techniques in various fields of science. The topics, each described by leading experts in the field, range from single molecule experiments in quantum optics and solid-state physics to analogous investigations in physical chemistry and biophysics. A unifying theme of all chapters is the power of single molecule techniques to unravel fluctuations and heterogeneities usually hidden in the ensemble average of complex systems. The concept for the book originated from a gathering of some of the world's leading scientists at the Nobel Conference in Sweden.
This book provides a thorough account of the current status of achievements made in the area of soft X-Ray laser source development and of the increasingly diverse applications being demonstrated using such radiation sources. There is significant effort worldwide to develop very bright, short duration radiation sources in the X-Ray spectral region - driven by the multitude of potential applications in all branches of science. This book contains updates on several different approaches for comparative purposes but concentrates on developments in the area of laser-produced plasmas, whereby transient population inversion and gain between ion states is pumped by optical lasers interacting with pre-formed plasmas. Topics covered will include Laser-driven XRLs, Collisional XRLs, Recombination XRLs, Transient Inversion Collisional XRLs, Optical Field Ionization XRLs, Alternative XRL, pumping schemes Theory and simulations of XRL gain media and beam properties High order harmonic sources of XUV radiation, Free-electron lasers and other accelerator based X-Ray sources, X-Ray Laser drives, X-Ray optics and instrumentation Spectroscopy, and other diagnostics of laser media Applications of XRLs.
Over recent years electronic spectroscopy has developed significantly, with key applications in atmospheric chemistry, astrophysics and astrochemistry. High Resolution Electronic Spectroscopy of Small Molecules explores both theoretical and experimental approaches to understanding the electronic spectra of small molecules, and explains how this information translates to practice. Professors Geoffrey Duxbury and Alexander Alijah present the links between spectroscopy and photochemistry, and discuss theoretical treatments of the interaction between different electronic states. They provide a thorough discussion of experimental techniques, and explore practical applications. This book will be an indispensable reference for graduate students and researchers in physics and chemistry working on theoretical and practical aspects of electronic spectra, as well as atmospheric scientists, photochemists, kineticists and professional spectroscopists. |
You may like...
Externally Heated Valve Engine - A New…
Zbyszko Kazimierski, Jerzy Wojewoda
Hardcover
R3,236
Discovery Miles 32 360
Jaya: An Advanced Optimization Algorithm…
Ravipudi Venkata Rao
Hardcover
R2,696
Discovery Miles 26 960
|