![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Atomic & molecular physics
Taking an individual approach, this book focuses on the concepts underlying chemical physics. It presents the essence of a connected theory rather than mere explanations of apparently unrelated facts, helping readers to understand chemical phenomena in terms of the most fundamental laws of physics.
This book offers a modern way of dealing with the problems of equilibrium states of Bose systems. Starting with the variation principle of statistical mechanics and the energy-entropy balance principle as equilibrium criteria, results for general boson systems and models are explicitly derived using simple functional analytic calculus. Bridging the gap between general theoretical physics and the phenomenological research in the field of Bose systems, this book provides an insight into the fascinating quantum world of bosons. Key topics include the occurrence of BEC and its intimate structural relation with the phenomena of spontaneous symmetry breaking and off-diagonal long range order; the condensate equation; the issue concerning the choice of boundary conditions; solvable versus non-solvable boson models; the set of quasi-free boson states; the role of dissipative perturbations; and the surprising but general relation between general quantum fluctuations and boson systems. Only some knowledge of quantum mechanics and undergraduate algebra and analysis is assumed. This textbook brings students and researchers smoothly from general concepts to vivid applications.
Researchers, postgraduate and undergraduate students of high energy physics
This book covers the fundamental aspects of fiber lasers and fiber amplifiers, and includes a wide range of material from laser physics fundamentals to state-of-the-art topics in this rapidly growing field of quantum electronics. This expanded and updated new edition includes substantial new material on nonlinear frequency conversion and Raman fiber lasers and amplifiers, as well as an expanded list of references inclusive of the recent literature in the field. Emphasis is placed on the nonlinear processes taking place in fiber lasers and amplifiers, their similarities, differences to, and their advantages over other solid-state lasers. The reader will learn the basic principles of solid-state physics and optical spectroscopy of laser active centers in fibers, the main operational laser regimes, and will receive practical recommendations and suggestions on fiber laser research, laser applications, and laser product development. The book will be useful for students, researchers, and professional physicists and engineers who work with lasers in the optical and telecommunications field, as well as those in the chemical and biological industries.
Some countries have moved beyond the design and operation of nuclear electricity generating systems to confronting the issue of nuclear waste disposal, whole others are still committed to further nuclear facility construction. Volume 24 chronicles these key developments and examines nuclear reactor accidents at Chernobyl, Bhopal, and TMI. The text also analyzes current international knowledge of neutron interactions; deterministic methods based on mean values for assessing radiation distributions; practical applications of the TIBERE models to explicit computation of leakage terms in realistic reactor geometry; and a technique to deal with the issues of finance, risk assessment, and public perception.
To all four of us, Carsten was the best possible friend and colleague. To Finn, he was a fellow student in the history of science for several years at the Niels Bohr Institute; to Relge, he was a welcome resource for personal and intellectual interac tion in an otherwise less than fertile environment for the history of science; Roger was Carsten's friend and advisor, not least in the development of the dissertation on which the present book is based; and as director of the Niels Bohr Archive, Erik was his main advisor in his historical work. Because he was the person closest to Carsten's work on his Ph. D. dissertation on the history of beta decay, on which the present book is based, it is only fitting that Erik stands as single author of the words in Carsten's memory at the very beginning of this book. Before his untimely death shortly after the completion of the Ph. D. disser tation, Carsten had himself plans to develop the dissertation into a book. Being a true perfectionist, he wanted to rework the manuscript substantively, especially with regard to relating it to the broader discussion among historians of science."
This book provides an intuitive yet sound understanding of how structure and properties of solids may be related. The natural link is provided by the band theory approach to the electronic structure of solids. The chemically insightful concept of orbital interaction and the essential machinery of band theory are used throughout the book to build links between the crystal and electronic structure of periodic systems. In such a way, it is shown how important tools for understanding properties of solids like the density of states, the Fermi surface etc. can be qualitatively sketched and used to either understand the results of quantitative calculations or to rationalize experimental observations. Extensive use of the orbital interaction approach appears to be a very efficient way of building bridges between physically and chemically based notions to understand the structure and properties of solids.
This thesis is a tour-de-force combination of analytic and computational results clarifying and resolving important questions about the nature of quantum phase transitions in one- and two-dimensional magnetic systems. The author presents a comprehensive study of a low-dimensional spin-half quantum antiferromagnet (the J-Q model) in the presence of a magnetic field in both one and two dimensions, demonstrating the causes of metamagnetism in such systems and providing direct evidence of fractionalized excitations near the deconfined quantum critical point. In addition to describing significant new research results, this thesis also provides the non-expert with a clear understanding of the nature and importance of computational physics and its role in condensed matter physics as well as the nature of phase transitions, both classical and quantum. It also contains an elegant and detailed but accessible summary of the methods used in the thesis-exact diagonalization, Monte Carlo, quantum Monte Carlo and the stochastic series expansion-that will serve as a valuable pedagogical introduction to students beginning in this field.
This is a textbook on the theory and calculation of molecular
electromagnetic and spectroscopic properties designed for a
one-semester course with lectures and exercise classes. The idea of
the book is to provide thorough background knowledge for the
calculation of electromagnetic and spectroscopic properties of
molecules with modern quantum chemical software packages.
This comprehensive text presents not only a detailed exposition of the basic principles of nuclear physics but also provides a contemporary flavour by covering the recent developments in the field. Starting with a synoptic view of the subject, the book explains various physical phenomena in nuclear physics along with experimental methods of measurement. Nuclear forces as encountered in two body problems are detailed next followed by the problems of radioactive decay. Nuclear reactions are then comprehensively explained along with the various models of reaction mechanism. This is followed by recent developments like the pre-equilibrium model and heavy ions induced reaction.
This collection of lectures treats the dynamics of open systems with a strong emphasis on dissipation phenomena related to dynamical chaos. This research area is very broad, covering topics such as nonequilibrium statistical mechanics, environment-system coupling (decoherence) and applications of Markov semi-groups to name but a few. The book addresses not only experienced researchers in the field but also nonspecialists from related areas of research, postgraduate students wishing to enter the field and lecturers searching for advanced textbook material.
This PhD sought to determine the mechanisms for the reactor explosions by mapping, collecting and analysing samples from across the area of Japan that received radioactive fallout from the explosions. In doing this, the author conducted significant fieldwork in the restricted-access fallout zone using ground and novel UAV-based mapping of radiation to identify hot-spot areas for sample collecting but also using these tools to verify the efficacy of the clean-up operations ongoing in the prefecture. Such fieldwork was both technically pioneering for its use of UAVs (drones) but also selfless in terms of bravely entering a nuclear danger area to collect samples for the greater benefit of the scientific community.
Volume 1 of this three-part series introduces the fundamental concepts of quantum field theory using the formalism of canonical quantization. This volume is intended for use as a text for an introductory quantum field theory course that can include both particle and condensed matter physics students. Dr. Strickland starts with a brief review of classical field theory and uses this as a jumping off point for the quantization of classical field, thereby promoting them to proper quantum fields. He then presents the formalism for real and complex scalar field theories, fermion field quantization, gauge field quantization, toy models of the nuclear interaction, and finally the full Lagrangian for QED and its renormalization. Part of IOP Series in Nuclear Medicine.
Multiply charged ions have always been in the focus of atomic physics, astrophysics, plasma physics, and theoretical physics. Within the last few years, strong progress has been achieved in the development of ion sources, ion storage rings, ion traps, and methods to cool ions. As a consequence, nowadays, experiments with ensembles of multiply charged ions of brilliant quality are performed in many laboratories. The broad spectrum of the experiments demonstrates that these ions are an extremely versatile tool for investigations in pure and applied physics. It was the aim of this ASI to bring together scientists working in different fields of research with multiply charged ions in order to get an overview of the state of the art, to sound out possibilities for fruitful cooperations, and to discuss perspectives for the future. Accordingly, the programme of the ASI reached from established areas like QED calculations, weak interactions, x-ray astronomy, x-ray lasers, multi photon excitation, heavy-ion induced fusion, and ion-surface interactions up to the very recently opened areas like bound-beta decay, laser and x-ray spectroscopy, and spectrometry of ions in rings and traps, and the interaction of highly charged ions with biological cells. Impressive progress in nearly all of the fields could be reported during the meeting which is documented by the contributions to this volume. The theoretical understand ing of QED and correlation effects in few-electron heavy ions is rapidly developing."
Theoretical and experimental studies of phase transitions are at the forefront of modern condensed-matter physics. The seminal insight into the role played by fluctuations led to the renormalization group, an approach that has proved extremely useful in many other fields as well. This text considers a wide variety of problems in the theory of phase transitions, revealing their common features as well as their distinctions. Formal aspects are developed as required in discussions of particular systems, and theory is compared to experiment wherever possible. This book begins with a review of the classical approach, including the main aspects of a self-consistent treatment of systems with broken symmetry and a discussion of the Ginzburg-Landau functional. It then turns to a treatment of the renormalization group, discussing both Wilson's formulation based on Kadanoff's scale invariance as well as the approach using field theory. The authors then turn to a generalized approach using scale equations, which eliminates many of the problems of the other formulations. Subsequent chapters discuss applications of this approach: first to simple models; then to more realistic systems such as complex Heisenberg magnets, antiferromagnets, ferroelectrics, impure systems, and high-T(subscript c) superconductors. Finally, in the last two chapters many of these systems are analyzed within the framework of exactly solvable models. Suitable for advanced undergraduates as well as graduate students in physics, the text assumes some knowledge of statistical mechanics, but is otherwise self-contained.
My aim in this book has been to give an account of the theoretical methods of analysis of multiphoton processes in atomic physics. In this account I have emphasized systematic methods as opposed to ad hoc approaches. Both perturbative and nonperturbative methods are presented with il- lustrative results of concrete applications. The perturbation theory is the primary tool of analysis of nonresonant multiphoton processes. It is developed here in conjunction with a diagrammatic language and is also renormalized to free it from the unwanted divergences which accompany the ordinary treatment when higher-order corrections are considered. The nonperturbative methods (i.e., methods other than that of power series ex- pansion in the field strength) become particularly important for consistent treatments of problems involving, for example, intermediate resonances, high field strengths, and finite pulse duration. The specifically nonpertur- bative methods for multiphoton transitions are presented in Chapters 6-11. The methods of resolvent equations and of effective Hamiltonians are developed for both the stationary and the time-dependent fields. The densi- ty matrix method is presented in conjunction with the problems of relaxa- tion and of fluctuating fields. The Floquet theory is presented both in the energy domain and in the time domain. Also treated are the methods of continued fractions, recursive iterative equations, and chain Hamiltonians.
First published in 1983, this book has become a classic among advanced textbooks. The new fourth edition maintains the high standard of its predecessors. The book offers basic knowledge of field theory and particle phenomenology. The author presents the basic facts of quark and gluon physics in pedagogical form. Explanations of theory are supported throughout with experimental findings. The text provides readers with sufficient understanding to follow modern research articles. This fourth edition presents a new section on heavy quark effective theories, more material on lattice QCD and on chiral perturbation theory.
"If there would be no God ~ then what a staff-captain am I?" ~ said one of the characters in a novel by Dostoevskii. In a similar way we can exclaim: "If there would be no nonlinearity ~ than what physics would that be'?". Really, the most interesting and exciting effects are described by non linear equations, and vanish in the linear approximation. For example, the general theory of relativity by A.Einstein comes to mind first - one of the most beautiful physical theories, which is in fact essentially nonlinear. Next, the phase transitions crystal ~ liquid and liquid ~ gas are due to the anhar monicity of inter-particle interactions, to dissociation and infinite motion. Similarly, transitions into the superconducting state or the superftuid would be impossible with purely harmonic interaction potentials. Another bril liant achievement in nonlinear physics was the construction of a laser and the subsequent development of nonlinear optics. The latter describes the in teraction of the matter with light of super-high intensity, when multi-quanta intra-molecular transitions become essential. Last, we should note here the very beautiful mathematical theory ~ the theory of catastrophes. Its subject is the study of invariant general properties of multi-dimensional surfaces in the vicinity of bifurcation points with respect to continuous transformations.
This thesis makes significant advances in the quantitative understanding of two intrinsically linked yet technically very different phenomena in quantum chromodynamics (QCD). Firstly, the thesis investigates the soft probe of strong interaction topological fluctuations in the quark-gluon plasma (QGP) which is made possible via the anomalous chiral transport effects induced by such fluctuations. Here, the author makes contributions towards establishing the first comprehensive tool for quantitative prediction of the chiral magnetic effect in the QGP that is produced in heavy ion collision experiments. Secondly, the thesis deals with the hard probe of strongly coupled QGP created in heavy-ion collisions. In particular, this study addresses the basic question related to the nonperturbative color structure in the QGP via jet energy loss observables. The author further develops the CUJET computational model for jet quenching and uses it to analyze the topological degrees of freedom in quark-gluon plasma. The contributions this thesis makes towards these highly-challenging problems have already generated widespread impacts in the field of quark-gluon plasma and high-energy nuclear collisions.
This thesis presents two significant results in the field of precision measurements in low-energy nuclear physics. Firstly, it presents a precise half-life determination of 11C, leading to the most precise ft-value for a beta decay transition between mirror nuclides, an important advance in the testing of the electroweak sector of the Standard Model. Secondly, it describes a high-precision mass measurement of 56Cu, a critical nucleus for determining the path of the astrophysical rapid-proton capture process, performed by the author using the LEBIT Penning trap at the National Superconducting Cyclotron Laboratory. This new measurement resolves discrepancies in previously-reported calculated mass excesses. In addition, the thesis also presents the construction and testing of a radio-frequency quadrupole cooler and buncher that will be part of the future N = 126 factory at Argonne National Laboratory aimed at producing nuclei of interest for the astrophysical rapid-neutron capture process for the first time.
This book aims to present a unified account of the physics of atoms and molecules from a modern viewpoint. It is based on courses given by the authors at Middle East Technical University, Ankara and Georgia Institute of Technology, Atlanta, and is suitable for study at third and fourth year levels of an undergraduate course.Students should be able to read this volume and understand its contents without the need to supplement it by referring to more detailed discussions. The whole subject covered in this volume is expected to be finished in one semester.
This book illustrates the significance of various optical spectroscopy and microscopy techniques, including absorption spectroscopy, fluorescence spectroscopy, infrared spectroscopy, and Raman spectroscopy for deciphering the nature of biological molecules. The content of this book chiefly focuses on (1) the principle, theory, and instrumentation used in different optical spectroscopy techniques, and (2) the application of these techniques in exploring the nature of different biomolecules (e.g., proteins, nucleic acids, enzymes, and carbohydrates). It emphasizes the structural, conformational and dynamic, and kinetic including the changes in biomolecules under a range of conditions. In closing, the book summarizes recent advances in the field of optical spectroscopic and microscopic techniques.
This multidisciplinary book is intended to serve as a reference for postgraduate students and researchers working in the fields of charged particle optics or other finite-element-related applications. It is also suitable for use as a graduate text. For the non-specialist in charged particle optics, the opening chapters provide an introduction to the kinds of field problems that occur in charged particle beam systems. A new and comprehensive approach to the subject is taken. The finite element method is placed within a wider framework than strictly charged particle optics. Concepts developed in fluid flow and structural analysis, not hitherto used in charged particle optics, are presented. Benchmark test results provide a way of comparing the finite element method to other field-solving methods. The book also reports on some high-order interpolation techniques and mesh generation methods that will be of interest to other finite element researchers. Additional coverage includes: field theory and field solutions for charged particle optics; aspects of the finite difference method related to the finite element method; finite element theory and procedure, including detailed formulation of local and global matrices; higher-order elements, which can be an effective way of improving finite element accuracy; the finite element method in three dimensions; ways to formulate scalar and vector problems for magnetic fields; and significant reduction of truncation errors using higher-order elements and extrapolation methods.
Life is an enduring mystery. Yet, science tells us that living beings are merely sophisticated structures of lifeless molecules. If this view is correct, where do the seemingly purposeful motions of cells and organisms originate? In Life's Ratchet , physicist Peter M. Hoffmann locates the answer to this age-old question at the nanoscale.Below the calm, ordered exterior of a living organism lies microscopic chaos, or what Hoffmann calls the molecular storm,specialized molecules immersed in a whirlwind of colliding water molecules. Our cells are filled with molecular machines, which, like tiny ratchets, transform random motion into ordered activity, and create the purpose" that is the hallmark of life. Tiny electrical motors turn electrical voltage into motion, nanoscale factories custom-build other molecular machines, and mechanical machines twist, untwist, separate and package strands of DNA. The cell is like a city,an unfathomable, complex collection of molecular workers working together to create something greater than themselves.Life, Hoffman argues, emerges from the random motions of atoms filtered through these sophisticated structures of our evolved machinery. We are agglomerations of interacting nanoscale machines more amazing than anything in science fiction. Rather than relying on some mysterious life force" to drive them,as people believed for centuries,life's ratchets harness instead the second law of thermodynamics and the disorder of the molecular storm.Grounded in Hoffmann's own cutting-edge research, Life's Ratchet reveals the incredible findings of modern nanotechnology to tell the story of how the noisy world of atoms gives rise to life itself.
Quantum information- the subject- is a new and exciting area of
science, which brings together physics, information theory,
computer science and mathematics. Quantum Information- the book- is
based on two successful lecture courses given to advanced
undergraduate and beginning postgraduate students in physics. The
intention is to introduce readers at this level to the fundamental,
but offer rather simple, ideas behind ground-breaking developments
including quantum cryptography, teleportation and quantum
computing. The text is necessarily rather mathematical in style,
but the mathematics nowhere allowed priority over the key physical
ideas. My aim throughout was to be as complete and self- contained
but to avoid, as far as possible, lengthy and formal mathematical
proofs. Each of the eight chapters is followed by about forty
exercise problems with which the reader can test their
understanding and hone their skills. These will also provide a
valuable resource to tutors and lectures. |
![]() ![]() You may like...
Business Strategy and Applications in…
Wim Van Grembergen, Steven Dehaes
Hardcover
R5,086
Discovery Miles 50 860
Mobile Edge Artificial Intelligence…
Yuanming Shi, Kai Yang, …
Paperback
R2,775
Discovery Miles 27 750
Of Man And Beast - Further reflections…
Willie Labuschagne
Paperback
The Civil War at Perryville - Battling…
Christopher L Kolakowski
Paperback
|