![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Atomic & molecular physics
1 The Hanle Effect and Level-Crossing Spectroscopy-An Introduction.- 1. Historical Survey.- 2. Classical Interpretation of the Hanle Effect.- 3. Quantum Mechanical Interpretation of the Hanle Effect.- 4. The Density Matrix Formalism for the Hanle Effect (Broad-Band Excitation).- 5. Laser Excitation and Pressure-Induced Coherences.- 6. Nonzero-Field Level Crossing.- 7. Conclusions.- References.- Appendix. Magnetic Effects on the Polarization of Resonance Fluorescence (original work by Wilhelm Hanle, translated by G. Moruzzi).- 2 The Hanle Effect and Atomic Physics.- 1. Introduction.- 1.1. General Expression for the Hanle Signal in Terms of the Density Matrix.- 2. Spectroscopic Applications.- 2.1. Determination of Atomic Constants.- 2.2. Measurements of Laser-Level Populations.- 2.3. Increasing Resolution, Subnatural Linewidth Effects.- 2.4. Forward Scattering, Line Crossing.- 2.5. Technical Applications.- 3. Collisions.- 3.1. Hanle Effect with Collisional Excitation.- 3.2. Hanle Effect and Optogalvanic Detection.- 3.3. Collision-Induced Hanle Resonances.- 3.4. Fluctuation-Induced Hanle Resonances.- 4. Hanle Effect in Strong Laser Fields.- 4.1. General Characteristic.- 4.2. Specific Situations.- 4.3. Hanle Effect and Nonlinear Optics.- 5. Hanle Effect in Quantum Optics.- 5.1. Dressed-Atom Model.- 5.2. Hanle Effect with Fluctuating Fields.- 5.3. Squeezing in the Hanle Effect.- References.- 3 The Hanle Effect and Level-Crossing Spectroscopy on Molecules.- 1. Introduction.- 2. Molecular Level-Crossing Signal.- 3. Comparison with Quantum Beat Experiments.- 4. Excitation of Molecules.- 5. Lifetime Investigations.- 6. Lande g-Factors.- 7. Electric-Field Level Crossing.- 8. Stark-Zeeman Recrossing and High-Field Level Crossing.- 9. Hanle Effect on NO2.- 9.1. The Influence of Detection Geometry.- 9.2. Details of the Hanle-Effect Signal.- 9.3. Collisions.- 9.4. Discussion of Hanle-Effect Experiments on NO2.- 10. Conclusion.- References.- 4 The Nonlinear Hanle Effect and Its Applications to Laser Physics.- 1. The Nonlinear Hanle Effect and Its Experimental Observation.- 2. Saturation Intensity and Saturated Linewidth.- 3. The Three-Level Case: Homogeneously Broadened Lines.- 4. The Three-Level Case: Doppler-Broadened Lines and the Rate Equations.- 5. The General Case.- 6. The Rate-Equation Approach to the Nonlinear Hanle Effect in Inhomogeneously Broadened Transitions.- 7. The Nonlinear Hanle Effect with a Gaussian Laser Beam.- 8. The Nonlinear Hanle Effect in Absorption.- 9. The Nonlinear Hanle Effect in Laser-Active Media.- 9.1. The He-Ne Laser.- 9.2. The Xe Laser.- 9.3. The He-CdII and He-ZnII Lasers.- 9.4. The Noble-Gas Ion Lasers.- 9.5. Optically Pumped Far-Infrared Lasers.- 9.6. Other Lasers.- 9.7. Conclusions.- References.- 5 Applications of the Hanle Effect in Solar Physics.- 1. Introduction.- 2. Brief Review of the Properties of Solar Magnetic Fields.- 3. Overview of the Diagnostic Possibilities and Limitations of the Hanle Effect.- 4. Basic Theoretical Concepts for Applications in Astrophysics.- 5. Diagnostics of Magnetic Fields in Solar Prominences.- 6. Survey of Scattering Polarization on the Solar Disk.- 7. Diagnostics of Turbulent Magnetic Fields.- 8. Diagnostics of Magnetic Fields in the Chromosphere-Corona Transition Region and Above.- 9. Concluding Remarks.- References.- 6 Applications of the Hanle Effect in Solid State Physics.- 1. Introduction.- 2. The Hanle Effect on Free Electrons.- 2.1. Optical Orientation of Electron Spins.- 2.2. Occurrence of Electron-Nucleus Interaction in Polarized Luminescence.- 2.3. Optical Alignment of Electron Momenta in a Magnetic Field.- 3. The Hanle Effect on Excitons.- 3.1. The ?8 x ?6 and ?7 x ?6 Excitons in Cubic Crystals.- 3.2. The ?9 x ?7 and ?7 x ?7 Excitons in Hexagonal II-VI Crystals with Wurtzite Structure.- 3.3. The ?7 x ?8 Excitons in III-VI Crystals with Symmetry Class D3h.- 3.4. The Influence of Reemission on the Hanle Effect.- 3.5. Hot Excitons and Polaritons.- 4. The H
Since the discovery that polymer single crystals are composed of chain folded macromolecules in 1957, the crystallization of polymers has attracted considerable interest and still provides fascinating and fruitful areas of research. Only a few books have been fully devoted to the crystallization of polymers in the past. This book contains the proceedings of the NATO ARW devoted to the `Crystallization of Polymers' which took place in September 1992 at the University of Mons-Hainaut (Belgium). In view of the variety of papers devoted to the crystallization of polymers, this book will be used in the next few years as a reference book for scientists concerned in the field of polymer physical chemistry. Crystallization of Polymers is mainly devoted to the experimental and theoretical study of the crystallization of synthetic polymers. As a kinetic study of the growth of polymer crystals should always be preceded by a morphological or a structural investigation, the structure, the morphology of polymer crystals and more particularly the lamellar and supralamellar organizations, as well as the nature of the crystal amorphous interface are reviewed and discussed.
The NATO Advanced Research Workshop on Fundamental Aspects of Inert Gases in Solids, held at Bonas, France from 16-22 September 1990, was the fifth in a series of meetings that have been held in this topic area since 1979. The Consultants' Meeting in that year at Harwell on Rare Gas Behaviour in Metals and Ionic Solids was followed in 1982 by the Jiilich Inter national Symposium on Fundamental Aspects of Helium in Metals. Two smaller meetings have followed-a CECAM organised workshop on Helium Bubbles in Metals was held at Orsay, France in 1986 while in February 1989, a Topical Symposium on Noble Gases in Metals was held in Las Vegas as part of the large TMS/AIME Spring Meeting. As is well known, the dominating feature of inert gas atoms in most solids is their high heat of solution, leading in most situations to an essentially zero solubility and gas-atom precipita tion. In organising the workshop, one particular aim was to target the researchers in the field of inert-gas/solid interactions from three different areas--namely metals, tritides and nuclear fuels-in order to encourage and foster the cross-fertilisation of approaches and ideas. In these three material classes, the behaviour of inert gases in metals has probably been most studied, partly from technological considerations-the effects of helium production via (n, a) reac tions during neutron irradiation are of importance, particularly in a fusion reactor environ ment-and partly from a more fundamental viewpoint."
For the first half of the 20th Century, low-energy nuclear physics was one of the dominant foci of all of science. Then accelerators prospered and energies rose, leading to an increase of interest in the GeV regime and beyond. The three articles comprising this end-of-century Advances in Nuclear Physics present a fitting and masterful summary of the energy regimes through which nuclear physics has developed and promises to develop in future. One article describes new information about fundamental symmetries found with kV neutrons. Another reviews our progress in understanding nucleon-nucleus scattering up to 1 GeV. The third analyzes dilepton production as a probe for quark-gluon plasmas generated in relativistic heavy-ion collisions.
Proceedings of the International Conference on Exotic Atoms and Related Topics (EXA 2014) held in Vienna, Austria, September 14-19, 2014. Now the research in exotic atoms has a remarkable history of more than 50 years. Enormous success in the understanding of fundamental interactions and symmetries resulted from the research on these tiny objects at the femtoscale. This volume contains research papers on recent achievements and future opportunities of this highly interdisciplinary field of atomic, nuclear, and particle physics. The Proceedings are structured according to the conference session topics: Kaon-Nucleus and Kaon-Nucleon Interactions, Antihydrogen and Fundamental Symmetries, Hadronphysics with Antiprotons, Future Facilities and Instrumentation, Low energy QCD. Reprint from Hyperfine Interactions vol. 233 nos. 1-3 and vol. 234 nos. 1-3.
The authors aim to hone the theory of electron-atom and electron-ion collisions by developing mathematical equations and comparing their results to the wealth of recent experimental data. This first of three parts focuses on potential scattering, and will serve as an introduction to many of the concepts covered in Parts II and III. As these processes occur in so many of the physical sciences, researchers in astrophysics, atmospheric physics, plasma physics, and laser physics will all benefit from the monograph.
Are the particles of modern physics "real" or are they virtual entities, their existence deduced merely by abstract theories? This book examines the continuing debate regarding the inner constitution of matter by exploring the particle concept in physics. It investigates if the particles of particle physics are real or not. Readers interested in the "true meaning" of such physical concepts will find this book informative and thought provoking.
Angle and spin resolved Auger emission physics deals with the theoretical and numerical description, analysis and interpretation of such types of experiments on free atoms and molecules. This monograph derives the general theory applying the density matrix formalism and, in terms of irreducible tensorial sets, so called state multipoles and order parameters, for parameterizing the atomic and molecular systems, respectively. It is the first book on angle and spin-resolved Auger emission.
This book covers polarization, alignment, and orientation effects in atomic collisions induced by electron, heavy particle, or photon impact. The first part of the book presents introductory chapters on light and particle polarization, experimental and computational methods, and the density matrix and state multipole formalism. Examples and exercises are included. The second part of the book deals with case studies of electron impact and heavy particle excitation, electron transfer, impact ionization, and autoionization. A separate chapter on photo-induced processes by new-generation light sources has been added. The last chapter discusses related topics and applications. Part III includes examples of charge clouds and introductory summaries of selected seminal papers of tutorial value from the early history of the field (1925 - 1975). The book is a significant update to the previous (first) edition, particularly in experimental and computational methods, the inclusion of key results obtained during the past 15 years, and the extended coverage of photo-induced processes. It is intended as an introductory text for both experimental and theoretical students and researchers. It can be used as a textbook for graduate courses, as a primary source for special topics and seminar courses, and as a standard reference. The book is accompanied by electronically available copies of the full text of the key papers in Part III, as well as animations of theoretically predicted electron charge clouds and currents for some of the cases discussed in Part II.
Progress in Optics, Volume 67, highlights new advances, with this updated volume presenting interesting chapters on a variety of timely topics in the field. Each chapter is written by an international board of authors. The book contains five reviews of the latest developments in optics.
This book had its origins in lectures presented at EPFL, Lausanne, during two separate visits (the most recent being to IRRMA). The author is most grateful to Professors A. Baldereschi, R. Car, and A. Quattropani for making these visits possible, and for the splendidly stimulating environment provided. Professors S. Baroni and R. Resta also influenced considerably the presentation of material by constructive help and comments. Most importantly, Chapters 4 and 5 were originally prepared for a review article by Professor G. Senatore, then at Pavia and now in Trieste, and myself for Reviews of Modem Physics (1994). In the 'course of this collaboration, he has taught me a great deal, especially about quantum Monte Carlo procedures, and Chapter 5 is based directly on this review article. Also in Chapter 4, my original draft on Gutzwiller's method has been transformed by his deeper understanding; again this is reflected directly in Chapter 4; especially in the earlier sections. In addition to the above background, it is relevant here to point out that, as a backcloth for the present, largely "state of the art," account, there are two highly relevant earlier books: The Many-body Problem in Quantum Mechanics with W.
These proceedings gather invited and contributed talks presented at the XXI DAE-BRNS High Energy Physics Symposium, which was held at the Indian Institute of Technology Guwahati in December 2014. The contributions cover many of the most active research areas in particle physics, namely (i) Electroweak Physics; (ii) QCD and Heavy Ion Physics; (iii) Heavy Flavour Physics and CP Violation; (iv) Neutrino Physics; (v) Astro-particle Physics and Cosmology; (vi) Formal Theory; (vii) Future Colliders and New Machines; and (viii) BSM Physics: SUSY, Extra Dimensions, Composites etc. The DAE-BRNS High Energy Physics Symposium, widely considered to be one of the premiere symposiums organised in India in the field of elementary particle physics, is held every other year and supported by the Board of Research in Nuclear Sciences, Department of Atomic Energy, India. Roughly 250 physicists and researchers participated in the 21st Symposium, discussing the latest advancements in the field in 18 plenary review talks, 15 invited mini-review talks and approximately 130 contributed presentations. Bringing together the essential content, the book offers a valuable resource for both beginning and advanced researchers in the field.
This is a commemoration volume to honor Professor M Veltman on the ocassion of his 60th birthday. It contains articles on Gauge field theories, a subject to which Prof. Veltman has made many important and seminal contributions. Some of the contributions are based on invited talks given at the Conference held in Ann Arbor, Michigan, May 16 - 18 1991. The articles in the book cover a wide range of topics from formal and phenomenological to the experimental aspects of Gauge theories.
Volume 2 of this three-part series presents the quantization of classical field theory using the path integral formalism. For this volume the target audience is students who wish to learn about relativistic quantum field theory applied to particle physics, however, it is still very accessible and useful for students of condensed matter. This volume begins with the introduction of the path integral formalism for non-relativistic quantum mechanics and then, using this as a basis, extends the formalism to quantum fields with an infinite number of degrees of freedom. Dr. Strickland then discusses how to quantize gauge fields using the Fadeev-Popov method and fermionic fields using Grassman algebra. He then presents the path integral formulation of quantum chromodynamics and its renormalization. Finally, he discusses the role played by topological solutions in non-abelian gauge theories.
The recent progress of thermonuclear fusion research based on the magnetic confinement of high-temperature plasmas, as weil as the design ofthe first experi- mental fusion tokamak reactors, has demonstrated that the physical conditions at the plasma periphery playa decisive role in achieving, maintaining, and controlling the thermonuclear bUffi. Because it is an interface between the hot burning deute- rium-tritium plasma and the cold material walls ofthe reactor vessel, the boundary (or the edge) plasma has to fulfill many functions related to the protection of the reactor walls from the intense particle and power fluxes generated in the reactor burning zone, protection of the central plasma from contamination by nonhydro- genie wall impurities (which dilute the thermonuclear fuel and degrade the burn conditions), exhaust of the thermal plasma power and the reactor ash (thermalized helium), etc. These functions of the boundary plasma can be accomplished by suitable modification of the configuration of the confining magnetic field in the edge region and by an appropriate use of the radiative and collisional properties of atomic, ionic, and molecular species present (or deliberatcly introduced) in the plasma edge region.
Many facets of quantum chromodynamics (QCD) are relevant to the in-depth discussion of theoretical and experimental aspects of high-energy nucleus-nucleus collisions. Exciting phenomena are being discovered in such ultrarelativistic heavy ion collisions, notably the increasingly important role of deconfined quark-gluon matter created in the early stage. The book contains lectures on the physics of hot dense matter, the expected phase transitions and colour superconductivity, recent developments in the treatment of nonlinear effects at large parton densities, fundamental issues in the phenomenology of ultrarelativistic heavy collisions. The latest data on heavy ion collisions are also presented. A unique collection of lectures on the many facets of QCD relevant to the physics of hot dense matter.
This book describes contemporary efforts to develop nano-molecular systems for future molecular electronics in which single molecules act as the basic elements in electrical circuits. While describing frontier research, it also gives a comprehensive introduction and discusses the related work being pursued worldwide. The book is composed of three parts. The first part describes the synthesis of novel molecules for molecular nano-systems. The second part deals mainly with nano-molecular systems on solid surfaces and the evaluation of the system with SPM. The third part reviews the theory required as a background for molecular electronics.
This book is devoted to the investigation of a rather prevalent process in nature: interaction of atoms with electromagnetic radiation. Primary attention is given to the low and intermediate photon energy region, from tens to hundreds of electron-volts. It is in this region that the probability of photon absorption and photoionization is largest. Data in this energy region are very interesting and useful in astrophysics and plasma physics, solid-state physics and quantum electronics, and in a number of other branches of science and technical applications. Formulae for hydrogen atom photoionization are given in almost all textbooks on quantum mechanics. Together with the limited amounts of experimental data available up to the beginning of the sixties, the formulae gave an impression of the completeness of the study of photoionization, of the absolute clarity of the mechanism of the process, and of the possibility of calculating rather easily its probability using the formulae.
This book is mostly concerned on the experimental research of the
nonlinear optical characteristics of various media, low- and
high-order harmonic generation in different materials, and
formation, and nonlinear optical characterization of clusters. We
also demonstrate the inter-connection between these areas of
nonlinear optics.
The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. This tenth volume covers a broad range of topics from this interdisciplinary research field, focusing on electron scattering by atoms in intense laser fields, atoms and molecules in ultrashort pulsed EUV and X-ray light fields, filamentation induced by intense laser fields, and physics in super-intense laser fields.
The optical trapping of colloidal matter is an unequalled field of technology for enabling precise handling of particles on microscopic scales, solely by the force of light. Although the basic concept of optical tweezers, which are based on a single laser beam, has matured and found a vast number of exciting applications, in particular in the life sciences, there are strong demands for more sophisticated approaches. This thesis gives an introductory overview of existing optical micromanipulation techniques and reviews the state-of-the-art of the emerging field of structured light fields and their applications in optical trapping, micromanipulation, and organisation. The author presents established, and introduces novel concepts for the holographic and non-holographic shaping of a light field. A special emphasis of the work is the demonstration of advanced applications of the thus created structured light fields in optical micromanipulation, utilising various geometries and unconventional light propagation properties. While most of the concepts developed are demonstrated with artificial microscopic reference particles, the work concludes with a comprehensive demonstration of optical control and alignment of bacterial cells, and hierarchical supramolecular organisation utilising dedicated nanocontainer particles.
This fourteenth volume in the Poincare Seminar Series is devoted to Niels Bohr, his foundational contributions to understanding atomic structure and quantum theory and their continuing importance today. This book contains the following chapters: - Tomas Bohr, Keeping Things Open; - Olivier Darrigol, Bohr's Trilogy of 1913; -John Heilbron, The Mind that Created the Bohr Atom; - Serge Haroche & Jean-Michel Raimond, Bohr's Legacy in Cavity QED; - Alain Aspect, From Einstein, Bohr, Schroedinger to Bell and Feynman: a New Quantum Revolution?; - Antoine Browaeys, Interacting Cold Rydberg Atoms: A Toy Many-Body System; - Michel Bitbol & Stefano Osnaghi, Bohrs Complementarity and Kants Epistemology. Dating from their origin in lectures to a broad scientific audience these seven chapters are of high educational value. This volume is of general interest to physicists, mathematicians and historians.
PAVI09 Proceedings of the 4th International Workshop "From Parity Violation to Hadronic Structure and more..." held in Bar Harbor, Maine, USA, 22-26 June 2009 Main topic: Parity Violation in the Electro-Weak Interactions and Other Low-Energy Tests of the Standard Model, including: Overview of the experimental program, Strangeness in the nucleon: experiment and theory, Standard Model tests, Hadronic Parity Violation, Probing two-photon exchange effects, Electro-weak radiative corrections involving hadronic structure, Technical developments, Neutrinos, beta decay and electric dipole moments. Reprinted from Hyperfine Interactions Vol. 200:1-3 and Vol. 201:1-3 .
Market: Physicists, chemists, biochemists, and biologists. Here's the first book to gather the vast range of experimental data in electron spin resonance (ESR) into a single volume. Concise yet comprehensive, it offers an easy-to-use collection of up-to-date experimental data, methods, and theory. The Handbook includes key contributions from leading scientists and provides over 200 tables and figures. Although specific ESR subfields are covered in numerous books and journals, the Handbook of Electron Spin Resonance is the only comprehensive reference to present extensive tabulation of data and experimental results. The Handbook also provides introductions to theoretical backgrounds, methods, and instrumentation.
This book is a long-term history of optics, from early Greek theories of vision to the nineteenth-century victory of the wave theory of light. It shows how light gradually became the central entity of a domain of physics that no longer referred to the functioning of the eye; it retraces the subsequent competition between medium-based and corpuscular concepts of light; and it details the nineteenth-century flourishing of mechanical ether theories. The author critically exploits and sometimes completes the more specialized histories that have flourished in the past few years. The resulting synthesis brings out the actors' long-term memory, their dependence on broad cultural shifts, and the evolution of disciplinary divisions and connections. Conceptual precision, textual concision, and abundant illustration make the book accessible to a broad variety of readers interested in the origins of modern optics. |
![]() ![]() You may like...
May Martin, and Other Tales of the Green…
Daniel Pierce Thompson
Paperback
R602
Discovery Miles 6 020
Dentition - According to Some of the…
Alexander Christian Becker
Paperback
R398
Discovery Miles 3 980
Redemption - 2017 Tales from the Writers…
Bernie Dowling, Vera M Murray, …
Hardcover
R833
Discovery Miles 8 330
Promising Practices in 21st Century…
Michele Kaschub, Janice Smith
Hardcover
R4,083
Discovery Miles 40 830
|