![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Atomic & molecular physics
From the pocket dosemeter and the photographic emulsion to the superheated drop detector and the single particle calorimeter - such is the wide range of detectors for nuclear radiation in this textbook. Emphasis is placed on simple but thorough explanations of the underlying physics for each detector and on the applications to which these detectors can be put. Introductions to the types of radiations concerned and their interaction with matter lead to descriptions of well-established devices such as ionization chambers, proportional and Geiger counters, scintillation counters and semiconductor detectors, and other more recent types such as semiconductor drift chambers and dark matter detectors. A separate chapter discusses sources of noise and their influence on the energy resolution achievable with detector systems, and another the electronics used with radiation detectors. This book has been written by two university physicists who have worked and taught in the field for many years. It is intended for final-year students and new postgraduates as well as all established workers who use sources of ionizing radiation.
When a projectile and a target nucleus interact, creating a composite nucleus, the energy initially concentrated on a few nucleons spreads through the composite nucleus, which evolves towards a state of statistical equilibrium. During this equilibration process, nucleons, or aggregates of nucleons, having considerable energy, may be ejected. This book gives a comprehensive and up-to-date account of the experimental and theoretical research that has been devoted, during the past 25 years, to the study of these pre-equilibrium reactions. After a historical introduction, the theories of the reactions are described in detail, beginning with the phenomenological exciton and master equation theories and going on to the fully quantum-mechanical theories of Feshbach, Kerman and Koonin, Tamura and Udagawa, and Weidenmuller and colleagues. The multistep compound and multistep direct theories are considered separately, and all the theories are extensively compared with experimental data. A detailed account of compound nucleus reactions is also included, together with a review of the theories of the nuclear-level densities that are needed to evaluate pre-equilibrium cross-sections. The main emphasis of the book is on nucleon-induced reactions, but those due to composite particles and heavy ions are also considered.
This book is a wide-ranging survey of the physics of out-of-equilibrium systems of correlated electrons, ranging from the theoretical, to the numerical, computational and experimental aspects. It starts from basic approaches to non-equilibrium physics, such as the mean-field approach, then proceeds to more advanced methods, such as dynamical mean-field theory and master equation approaches. Lastly, it offers a comprehensive overview of the latest advances in experimental investigations of complex quantum materials by means of ultrafast spectroscopy.
Explores a unique topic in physics. Traces the author's search for hypothetical subatomic particles. Both a memoir and a scientific detective story. Employs humor and eliminates jargon wherever possible. Suitable for both general readers and scientists.
Proceedings of the International Conference on Exotic Atoms and
Related Topics (EXA 2011) held in Vienna, Austria, September 5-9,
2011 Reprint from Hyperfine Interactions vol. 209, 210 and 211.
Neutrons provide an important tool for investigations in physics. Ultracold neutrons (UCN) belong to the extremely low energy range (10] -7 eV to 10]-8 eV), have velocities in the range 1-10 m s]-1 and wavelengths of 100-1000 A. Ultracold neutrons can be kept in hermetically sealed vessels for up to 15 minutes until they decay. This time is sufficient to observe the action of very weak fields and gives an insight into the properties of neutrons and their environment. Capture and heating by wall nuclei reduce the storage time of neutrons to below 15 minutes. Present research areas include attempts to understand and prevent the large losses of UCN, improve storage time, and to obtain fundamental results such as an upper limit to the electric dipole moment of neutrons and improved measurements of decay time. These studies have also led to a new approach to diffraction and diffusion theory, which is applicable to any radiation: waves or corpuscles. The book explains how physicists should cope with the problems of UCN research, how UCN can be used for fundamental and applied research, and summarizes the results which have been published.
Gets right to the point with step-by-step guidance on solving physics problems. Covers all topics in standard general physics courses in the same sequence. Keeps learning about physics fun and engaging through the story of dinosaurs being tested on their knowledge for a final challenge (deflecting an asteroid headed to Earth!). Enables the reader to quickly flip through and locate steps needed for a particular problem. Includes tons of easy to follow diagrams and worked solutions.
Physics and Astrophysics-Glimpses of the Progress provides a comprehensive account of physics and astrophysics from the time of Aristotle to the modern era of Stephen Hawking and beyond. It takes the readers of all ages through a pleasant journey touching on the major discoveries and inventions that have taken place in both the macro-world, including that in the cosmos, and the micro-world of atomic and subatomic particles related to physics and astrophysics. Use of historical perspective and anecdote makes the storytelling on the progress of physics and astrophysics both interesting and absorbing. While peering through different developments in these fields, the book never compromises with the sanctity of the scientific content, including the depth and beauty of the physical concept of the topics concerned and the philosophical viewpoints they represent. Where appropriate, the book also delves into value judgments of life that affect our civilization. Features The intricate concepts of physics and astrophysics are explained in simple terms and in easy-to-understand language. Physics and astrophysics are discussed in a connected and correlated way in a single volume of comprehensive size but in totality, which to date is the unique feature of this book. Starting with Aristotle's Physics and going through the work of Newton, Einstein, Schroedinger, Hubble, Hewish, Hawking, and others, including the present research on dark energy, dark matter, and the fifth force of nature, the reader will be kept absorbed and spellbound. In addition to the fundamental principles of Newtonian mechanics, Einstein's relativity, quantum mechanics, string theory, loop quantum gravity, and so on, the cutting-edge technologies of recent times, such as the Large Hadron Collider, Laser Interferometer Gravitational-wave Observatory, and Event Horizon Telescope, are also explored. The book is aimed primarily at undergraduate and graduate students, researchers, and professionals studying physics and astrophysics. General readers will also find the book useful to quench their thirst for knowledge about the developments in physics and astrophysics.
This book covers the role of water in global atmospheric phenomena, focussing on the physical processes involving water molecules and water microparticles. It presents the reader with a detailed look at some of the most important types of global atmospheric phenomena involving water, such as water circulation, atmospheric electricity and the greenhouse effect. Beginning with the cycle of water evaporation and condensation, and the important roles played by the nucleation and growth processes of water microdroplets, the book discusses atmospheric electricity as a secondary phenomenon of water circulation in the atmosphere, comprising a chain of processes involving water molecules and water microdroplets. Finally, the book discusses aspects of the molecular spectroscopy of greenhouse atmospheric components, showing how water molecules and water microdroplets give the main contribution to atmospheric emission in the infrared spectrum range. Featuring numerous didactic schematics and appendices detailing all necessary unit conversion factors, this book is useful to both active researchers and doctoral students working in the fields of atmospheric physics, climate science and molecular spectroscopy.
Fully updated throughout, with new content on topics including the latest developments in fission and fusion energy, the global financial crisis of 2008/2009, and the Fukushima-Daiichi nuclear accident. Accessible to readers without a formal education in the area Authored by an authority in the field
This book introduces the phenomenology and theory of hadron form factors in a consistent manner, deriving step-by-step the key equations, defining the form factors from the matrix elements of hadronic transitions and deriving their symmetry relations. Explained are several general concepts of particle theory and phenomenology exemplified by hadron form factors. The main emphasis here is on learning the analytical methods in particle phenomenology. Many examples of hadronic processes involving form factors are considered, from the pion electromagnetic scattering to heavy B-meson decays. In the second part of the book, modern techniques of the form factor calculation, based on the method of sum rules in the theory of strong interactions, quantum chromodynamics, are introduced in an accessible manner. This book will be a useful guide for graduate students and early-career researchers working in the field of particle phenomenology and experiments. Features: * The first book to address the phenomenology of hadron form factors at a pedagogical level in one coherent volume * Contains up-to-date descriptions of the most important form factors of the electroweak transitions investigated in particle physics experiments
The counter-intuitive aspects of quantum physics have been for long illustrated by thought experiments, from Einstein's photon box to Schroedinger's cat. These experiments have now become real, with single particles - electrons, atoms or photons - directly unveiling the weird features of the quantum. State superpositions, entanglement and complementarity define a novel quantum logic which can be harnessed for information processing, raising great hopes for applications. This book describes a class of such thought experiments made real. Juggling with atoms and photons confined in cavities, ions or cold atoms in traps, is here an incentive to shed a new light on the basic concepts of quantum physics. Measurement processes and decoherence at the quantum-classical boundary are highlighted. This volume, which combines theory and experiments, will be of interest to students in quantum physics, teachers seeking illustrations for their lectures and new problem sets, researchers in quantum optics and quantum information.
1. The book includes extensive context about the historical and newsworthy events that surround nuclear weapons and nuclear power plants in correlation to the plays analyzed. 2. The critically acclaimed HBO series Chernobyl is explored in chapter three and evaluated for the feeling of doom it creates for an audience watching. 3. The book makes comparisons of the pandemic to nuclear science history, acknowledging that culturally we do not always listen to scientific advice, and assessing how powerful governments often dismiss scientific dissent.
This volume contains the invited papers and selected contributed papers presented at the biennial International Symposium on ELECTRON COLLISIONS WITH MOLECULES, CLUSTERS AND SURF ACES held at Royal Holloway, University of London from 29th to 30th July, 1993. This Symposium was a Satellite Meeting of the XVIII International Conference on the Physics of Electronic and Atomic Collisions (ICPEAC) and follows a 16 year tradition of Satellite Conferences in related areas of collisions held in association with previous ICPEAC's. In the past each of these electron -molecule symposia covered the broad field of electron-molecule scattering at rather low energies, but also included hot topics. This time as well as covering the whole field, well defined electron collisions with clusters and with particles in the complex potential of a surface were emphasized. Not many details are known about such collisions, although they become more and more important in surface characterisation, plasma-wall interactions, electron induced desorption and reorganisation of adsorbed particles. Recently, much work, theoretical and experimental, has been devoted to electron collisions with rather large carbon, silicon and halogen containing molecules. These problems are of relevance in plasma assisted thin film formation and etching of surfaces and can now be approached with advanced theoretical methods and experimental equipment.
Mathematical Physics for Nuclear Experiments presents an accessible introduction to the mathematical derivations of key equations used in describing and analysing results of typical nuclear physics experiments. Instead of merely showing results and citing texts, crucial equations in nuclear physics such as the Bohr's classical formula, Bethe's quantum mechanical formula for energy loss, Poisson, Gaussian and Maxwellian distributions for radioactive decay, and the Fermi function for beta spectrum analysis, among many more, are presented with the mathematical bases of their derivation and with their physical utility. This approach provides readers with a greater connection between the theoretical and experimental sides of nuclear physics. The book also presents connections between well-established results and ongoing research. It also contains figures and tables showing results from the author's experiments and those of his students to demonstrate experimental outcomes. This is a valuable guide for advanced undergraduates and early graduates studying nuclear instruments and methods, medical and health physics courses as well as experimental particle physics courses. Key features Contains over 500 equations connecting theory with experiments. Presents over 80 examples showing physical intuition and illustrating concepts. Includes 80 exercises, with solutions, showing applications in nuclear and medical physics.
This 10th volume in the DPER series is intended to show how stable isotopes can be applied to understanding the palaeoenvironment. There are chapters on the interpretation of isotopes in water, tree rings, bones and teeth, lake sediments, speleothems and marine sediments. Isotopes can be extremely powerful palaeoenvironmental tools, however, as with all archives it is desirable to carry out a calibration exercise to investigate the basic systematics of isotope variation in the modern environment to establish the relationship between the measured signal and the isotope composition of the host. A robust calibration is seldom easy so isotope methods should be used in conjunction with a multi-proxy approach, using isotope signals from different materials or combined with other palaeoenvironmental techniques.
This book summarizes the latest advances in nanophotonics for biomedical applications, including biomolecular sensing and imaging, additive fabrications, and biophotonics. The engineering of nanophotonics will have significant impacts on the life sciences and medicine alike. Given its scope, the book offers a valuable asset for researchers, scientists, engineers, and graduate students in the fields of biomedical engineering, electrical engineering, materials sciences, optics, biology, and medicine.
This book highlights the novel research in quantum memory networking, especially quantum memories based on cold atomic ensembles. After discussing the frontiers of quantum networking research and building a DLCZ-type quantum memory with cold atomic ensemble, the author develops the ring cavity enhanced quantum memory and demonstrates a filter-free quantum memory, which significantly improves the photon-atom entanglement. The author then realizes for the first time the GHZ-type entanglement of three separate quantum memories, a building block of 2D quantum repeaters and quantum networks. The author also combines quantum memories and time-resolved measurements, and reports the first multiple interference of three single photons with different colors. The book is of good reference value for graduate students, researchers, and technical personnel in quantum information sciences.
This book is about nuclear legacies in Russia and Central Asia, focusing on selected sites of the Soviet atomic program, many of which have remained understudied. Nuclear operations, for energy or military purposes, demanded a vast infrastructure of production and supply chains that have transformed entire regions. In following the material traces of the atomic programs, contributors pay particular attention to memory practices and memorialization concerning nuclear legacies. Tracing the Atom foregrounds historical and contemporary engagements with nuclear politics: how have institutions and governments responded to the legacies of the atomic era? How do communities and artists articulate concerns over radioactive matters? What was the role of radiation expertise in a broader Soviet and international context of the Cold War? Examining nuclear legacies together with past atomic futures and post-Soviet memorialization and nuclear heritage shines light on how modes of knowing intersect with livelihoods, compensation policies, and historiography. Bringing together a range of disciplines - history, science and technology studies, social anthropology, literary studies, and art history - this volume offers insights that broaden our understanding of twentieth-century atomic programs and their long aftermaths.
Mathematical Physics for Nuclear Experiments presents an accessible introduction to the mathematical derivations of key equations used in describing and analysing results of typical nuclear physics experiments. Instead of merely showing results and citing texts, crucial equations in nuclear physics such as the Bohr's classical formula, Bethe's quantum mechanical formula for energy loss, Poisson, Gaussian and Maxwellian distributions for radioactive decay, and the Fermi function for beta spectrum analysis, among many more, are presented with the mathematical bases of their derivation and with their physical utility. This approach provides readers with a greater connection between the theoretical and experimental sides of nuclear physics. The book also presents connections between well-established results and ongoing research. It also contains figures and tables showing results from the author's experiments and those of his students to demonstrate experimental outcomes. This is a valuable guide for advanced undergraduates and early graduates studying nuclear instruments and methods, medical and health physics courses as well as experimental particle physics courses. Key features Contains over 500 equations connecting theory with experiments. Presents over 80 examples showing physical intuition and illustrating concepts. Includes 80 exercises, with solutions, showing applications in nuclear and medical physics.
First published in 1956, this classic work by N.F. Ramsey, 1989
Nobel Laureate in Physics, provides an account of atomic and
molecular structure. After an introductory section reviewing
experimental apparatus and the kinds of quantities that can be
measured, Ramsey provides comprehensive
As useful to students and nuclear professionals as its popular predecessors, this fifth edition provides the most up-to-date and accessible introduction to radiation detector materials, systems, and applications. There have been many advances in the field of radiation detection, most notably in practical applications. Incorporating these important developments, Measurement and Detection of Radiation, Fifth Edition provides the most up-to-date and accessible introduction to radiation detector materials, systems, and applications. It also includes more problems and updated references and bibliographies, and step-by-step derivations and numerous examples illustrate key concepts. New to the Fifth Edition: * Expanded chapters on semiconductor detectors, data analysis methods, health physics fundamentals, and nuclear forensics. * Updated references and bibliographies. * New and expanded problems.
This book provides advanced undergraduate and graduate students with an overview of the fundamentals of cold and ultracold chemistry. Beginning with definitions of what cold and ultracold temperatures mean in chemistry, the book then takes the student through the essentials of scattering theory (classical and quantum mechanical), light-matter interaction, reaction dynamics and Rydberg physics. The author aims to show the reader the richness of the topic while motivating students to understand the fundamentals of these intriguing reactions and underlying connecting relationships. Including material which was previously only found in specialized review articles, this book provides students working in the fields of ultracold gases, chemical physics and physical chemistry with the tools they need to immerse themselves in the realm of cold and ultracold chemistry. This book opens up the exciting chemical laws which govern chemistry at low temperatures to the next generation of researchers.
This book examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. It consists of two Parts. The part I is initially devoted towards the basic concepts of the conventional single quantum MRI techniques. It is supplemented by the basic knowledge required to understand multi-quantum MRI. Practical illustrations are included both on recent developments in conventional MRI and the MQ-MRI. This is to illustrate the connection between theoretical concepts and their scope in the clinical applications. The Part II initially sets out the basic details about quadrupole charge distribution present in certain nuclei and their importance about the functions they perform in our brain. Some simplified final mathematical expressions are included to illustrate facts about the basic concepts of the quantum level interactions between magnetic dipole and the electric quadrupole behavior of useful nuclei present in the brain. Selected practical illustrations, from research and clinical practices are included to illustrate the newly emerging ideas and techniques. The reader should note that the two parts of the book are written with no interdependence. One can read them quite independently. |
You may like...
Advances in Atomic, Molecular, and…
Susanne F Yelin, Louis F. DiMauro, …
Hardcover
R5,103
Discovery Miles 51 030
Advances in Quantum Chemistry, Volume 86
Erkki J. Brandas, Rodney J. Bartlett
Hardcover
R5,223
Discovery Miles 52 230
Exploring Quantum Mechanics - A…
Victor Galitski, Boris Karnakov, …
Hardcover
R6,101
Discovery Miles 61 010
|