![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Atomic & molecular physics
In this volume, contributions covering the theoretical and practical aspects of multicomponent crystals provide a timely and contemporary overview of the state-of-the art of this vital aspect of crystal engineering/materials science. With a solid foundation in fundamentals, multi-component crystals can be formed, for example, to enhance pharmaceutical properties of drugs, for the specific control of optical responses to external stimuli and to assemble molecules to allow chemical reactions that are generally intractable following conventional methods. Contents Pharmaceutical co-crystals: crystal engineering and applications Pharmaceutical multi-component crystals: improving the efficacy of anti-tuberculous agents Qualitative and quantitative crystal engineering of multi-functional co-crystals Control of photochromism in N-salicylideneaniline by crystal engineering Quinoline derivatives for multi-component crystals: principles and applications N-oxides in multi-component crystals and in bottom-up synthesis and applications Multi-component crystals and non-ambient conditions Co-crystals for solid-state reactivity and thermal expansion Solution co-crystallisation and its applications The salt-co-crystal continuum in halogen-bonded systems Large horizontal displacements of benzene-benzene stacking interactions in co-crystals Simultaneous halogen and hydrogen bonding to carbonyl and thiocarbonylfunctionality Crystal chemistry of the isomeric N,N'-bis(pyridin-n-ylmethyl)-ethanediamides, n = 2, 3 or 4 Solute solvent interactions mediated by main group element (lone-pair) (aryl) interactions
''The review articles in this series are invariably of a high standard, and those contained in the most recent volumes to appear (Volumes 14-16), are no exception.'' --- Journal of Plasma Physics, from a review of previous volumes The current volume includes chapters on the generation of noninductive current in a tokamak and resonance effects in oscillations of uneven flows of continuous media.
This third open access volume of the handbook series deals with accelerator physics, design, technology and operations, as well as with beam optics, dynamics and diagnostics. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A,B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
From the pocket dosemeter and the photographic emulsion to the superheated drop detector and the single particle calorimeter - such is the wide range of detectors for nuclear radiation in this textbook. Emphasis is placed on simple but thorough explanations of the underlying physics for each detector and on the applications to which these detectors can be put. Introductions to the types of radiations concerned and their interaction with matter lead to descriptions of well-established devices such as ionization chambers, proportional and Geiger counters, scintillation counters and semiconductor detectors, and other more recent types such as semiconductor drift chambers and dark matter detectors. A separate chapter discusses sources of noise and their influence on the energy resolution achievable with detector systems, and another the electronics used with radiation detectors. This book has been written by two university physicists who have worked and taught in the field for many years. It is intended for final-year students and new postgraduates as well as all established workers who use sources of ionizing radiation.
This book presents the state of the art on thermophysical and thermochemical properties, fabrication methodologies, irradiation behaviours, fuel reprocessing procedures, and aspects of waste management for oxide fuels in general and for thoria-based fuels in particular.The book covers all the essential features involved in the development of and working with nuclear technology. With the help of key databases, many of which were created by the authors, information is presented in the form of tables, figures, schematic diagrams and flow sheets, and photographs. This information will be useful for scientists and engineers working in the nuclear field, particularly for design and simulation, and for establishing the technology. One special feature is the inclusion of the latest information on thoria-based fuels, especially on the use of thorium in power generation, as it has less proliferation potential for nuclear weapons. Given its natural abundance, thorium offers a future alternative to uranium fuels in nuclear technology. In closing, the latest information on conventional uranium and plutonium fuels is also provided."
Proceedings of the International Conference on Exotic Atoms and
Related Topics (EXA 2011) held in Vienna, Austria, September 5-9,
2011 Reprint from Hyperfine Interactions vol. 209, 210 and 211.
This book covers the role of water in global atmospheric phenomena, focussing on the physical processes involving water molecules and water microparticles. It presents the reader with a detailed look at some of the most important types of global atmospheric phenomena involving water, such as water circulation, atmospheric electricity and the greenhouse effect. Beginning with the cycle of water evaporation and condensation, and the important roles played by the nucleation and growth processes of water microdroplets, the book discusses atmospheric electricity as a secondary phenomenon of water circulation in the atmosphere, comprising a chain of processes involving water molecules and water microdroplets. Finally, the book discusses aspects of the molecular spectroscopy of greenhouse atmospheric components, showing how water molecules and water microdroplets give the main contribution to atmospheric emission in the infrared spectrum range. Featuring numerous didactic schematics and appendices detailing all necessary unit conversion factors, this book is useful to both active researchers and doctoral students working in the fields of atmospheric physics, climate science and molecular spectroscopy.
Computational Atomic Structure: An MCHF Approach deals with the field of computational atomic structure, specifically with the multiconfiguration Hartree-Fock (MCHF) approach and the manner in which this approach is used in modern physics. Beginning with an introduction to computational algorithms and procedures for atomic physics, the book describes the theory underlying nonrelativistic atomic structure calculations (making use of Brett-Pauli corrections for relativistic effects) and details how the MCHF atomic structure software package can be used to this end. The book concludes with a treatment of atomic properties, such as energy levels, electron affinities, transition probabilities, specific mass shift, fine structure, hyperfine-structure, and autoionization. This modern, reliable exposition of atomic structure theory proves invaluable to anyone looking to make use of the authors' MCHF atomic structure software package, which is available publicly via the Internet.
This book is a wide-ranging survey of the physics of out-of-equilibrium systems of correlated electrons, ranging from the theoretical, to the numerical, computational and experimental aspects. It starts from basic approaches to non-equilibrium physics, such as the mean-field approach, then proceeds to more advanced methods, such as dynamical mean-field theory and master equation approaches. Lastly, it offers a comprehensive overview of the latest advances in experimental investigations of complex quantum materials by means of ultrafast spectroscopy.
The counter-intuitive aspects of quantum physics have been for long illustrated by thought experiments, from Einstein's photon box to Schroedinger's cat. These experiments have now become real, with single particles - electrons, atoms or photons - directly unveiling the weird features of the quantum. State superpositions, entanglement and complementarity define a novel quantum logic which can be harnessed for information processing, raising great hopes for applications. This book describes a class of such thought experiments made real. Juggling with atoms and photons confined in cavities, ions or cold atoms in traps, is here an incentive to shed a new light on the basic concepts of quantum physics. Measurement processes and decoherence at the quantum-classical boundary are highlighted. This volume, which combines theory and experiments, will be of interest to students in quantum physics, teachers seeking illustrations for their lectures and new problem sets, researchers in quantum optics and quantum information.
The top tools, tips, and techniques of the last decade —at your command. This book compiles and updates the best articles to date from the eleven-year history of Spectroscopy magazine's successful "Molecular Spectroscopy Workbench" column. From the fundamentals of important techniques to novel time- and money-saving ideas, it draws from a broad spectrum of recent developments in the field of molecular spectroscopy, including information on:
Articles have been updated where necessary to reflect advances made since their initial publication, and are arranged into sections that cover basic spectroscopic theory, applications, troubleshooting, and product/ conference reviews. Carefully assembled by long-term Spectroscopy columnist Emil Ciurczak, this accessible collection is an excellent practical resource for analytical chemists and others who use spectroscopy in their work.
This volume contains the invited papers and selected contributed papers presented at the biennial International Symposium on ELECTRON COLLISIONS WITH MOLECULES, CLUSTERS AND SURF ACES held at Royal Holloway, University of London from 29th to 30th July, 1993. This Symposium was a Satellite Meeting of the XVIII International Conference on the Physics of Electronic and Atomic Collisions (ICPEAC) and follows a 16 year tradition of Satellite Conferences in related areas of collisions held in association with previous ICPEAC's. In the past each of these electron -molecule symposia covered the broad field of electron-molecule scattering at rather low energies, but also included hot topics. This time as well as covering the whole field, well defined electron collisions with clusters and with particles in the complex potential of a surface were emphasized. Not many details are known about such collisions, although they become more and more important in surface characterisation, plasma-wall interactions, electron induced desorption and reorganisation of adsorbed particles. Recently, much work, theoretical and experimental, has been devoted to electron collisions with rather large carbon, silicon and halogen containing molecules. These problems are of relevance in plasma assisted thin film formation and etching of surfaces and can now be approached with advanced theoretical methods and experimental equipment.
This 10th volume in the DPER series is intended to show how stable isotopes can be applied to understanding the palaeoenvironment. There are chapters on the interpretation of isotopes in water, tree rings, bones and teeth, lake sediments, speleothems and marine sediments. Isotopes can be extremely powerful palaeoenvironmental tools, however, as with all archives it is desirable to carry out a calibration exercise to investigate the basic systematics of isotope variation in the modern environment to establish the relationship between the measured signal and the isotope composition of the host. A robust calibration is seldom easy so isotope methods should be used in conjunction with a multi-proxy approach, using isotope signals from different materials or combined with other palaeoenvironmental techniques.
This book summarizes the latest advances in nanophotonics for biomedical applications, including biomolecular sensing and imaging, additive fabrications, and biophotonics. The engineering of nanophotonics will have significant impacts on the life sciences and medicine alike. Given its scope, the book offers a valuable asset for researchers, scientists, engineers, and graduate students in the fields of biomedical engineering, electrical engineering, materials sciences, optics, biology, and medicine.
This book highlights the novel research in quantum memory networking, especially quantum memories based on cold atomic ensembles. After discussing the frontiers of quantum networking research and building a DLCZ-type quantum memory with cold atomic ensemble, the author develops the ring cavity enhanced quantum memory and demonstrates a filter-free quantum memory, which significantly improves the photon-atom entanglement. The author then realizes for the first time the GHZ-type entanglement of three separate quantum memories, a building block of 2D quantum repeaters and quantum networks. The author also combines quantum memories and time-resolved measurements, and reports the first multiple interference of three single photons with different colors. The book is of good reference value for graduate students, researchers, and technical personnel in quantum information sciences.
This new book is fully up to date with all the latest developments on both theoretical and experimental investigations of the Standard Model (SM) of particle physics with a particular emphasis on its historical development on both sides. It further stresses the cross-fertilisation between the two sub-disciplines of theoretical and experimental particle physics which has been instrumental in establishing the SM. In other words, the book develops a truly phenomenological attitude to the subject. In addition to emphasising the successes of the SM, this book also critically assesses its limitations and raises key unanswered questions for the purpose of presenting a new perspective of how to further our knowledge above and beyond it. It also contains both historical information from past experiments and latest results from the Large Hadron Collider at CERN. This book will be an invaluable reference to advanced undergraduate and postgraduate students, in addition to early-stage researchers in the field. Key Features: Provides a unique approach not found in current literature in developing and verifying the SM Presents the theory pedagogically but rigorously from basic knowledge of quantum field theory Brings together experimental and theoretical practice in one, cohesive text
Fully updated throughout, with new content on topics including the latest developments in fission and fusion energy, the global financial crisis of 2008/2009, and the Fukushima-Daiichi nuclear accident. Accessible to readers without a formal education in the area Authored by an authority in the field
This book presents the survismeter, a new invention that widely covers and determines PCPs of various molecules and experimentally measures the thermodynamic and kinetic stabilities of nanoemulsions. It unveils how a survismeter can measure surface tension, interfacial tension, wettability, viscosity, friccohesity, tentropy, rheology, density, activation energy, and particle size. It discusses novel models of molecular science that can be applied in the formulation and study of activities of functional molecules through their PCPs. It also introduces the new concept of friccohesity, which has emerged as an excellent substitute of viscosity and surface tension in experimental measurements as it does not require density measurements. It shows that the science and technology of the survismeter and friccohesity have become an inevitable part of scientific research, substantially integrating the domain of perfect industrial and academic formulations.
This guide to two-dimensional NMR spectroscopy helps the novice who
want e the technique, but needs a path through the bewildering
array of metho acronyms and the mathematical rigor found in most
books.
Explores a unique topic in physics. Traces the author's search for hypothetical subatomic particles. Both a memoir and a scientific detective story. Employs humor and eliminates jargon wherever possible. Suitable for both general readers and scientists.
Explores a unique topic in physics. Traces the author's search for hypothetical subatomic particles. Both a memoir and a scientific detective story. Employs humor and eliminates jargon wherever possible. Suitable for both general readers and scientists.
This book examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. It consists of two Parts. The part I is initially devoted towards the basic concepts of the conventional single quantum MRI techniques. It is supplemented by the basic knowledge required to understand multi-quantum MRI. Practical illustrations are included both on recent developments in conventional MRI and the MQ-MRI. This is to illustrate the connection between theoretical concepts and their scope in the clinical applications. The Part II initially sets out the basic details about quadrupole charge distribution present in certain nuclei and their importance about the functions they perform in our brain. Some simplified final mathematical expressions are included to illustrate facts about the basic concepts of the quantum level interactions between magnetic dipole and the electric quadrupole behavior of useful nuclei present in the brain. Selected practical illustrations, from research and clinical practices are included to illustrate the newly emerging ideas and techniques. The reader should note that the two parts of the book are written with no interdependence. One can read them quite independently.
From March 30th to April 3rd, 1992, a NATO Advanced Research workshop entitled "Time Dependent Quantum Molecular Dynamics: Theory and Experiment" was held at Snowbird, Utah. The organizing committee consisted of J. BROECKHOVE (Antwerp, Belgium), L. CEDERBAUM (Heidelberg, Germany), L. LATHOUWERS (Antwerp, Belgium), N. OHRN (Gainesville, Florida) and J. SIMONS (Salt Lake City, Utah). Fifty-two participants from eleven different countries attended the meeting at which thirty-three talks and one poster session were held. Twenty-eight participants submitted contributions to the proceedings of the meeting, which are reproduced in this volume. The workshop brought together experts in different areas 0 f molecular quantum dynamics, all adhering to the time dependent approach. The aim was to discuss and compare methods and applications. The ~amiliarityo~ the aUdience with the concepts o~ time dependent approaches greatly facilitated topical discussions and probing towards new applications. A broad area of subject matter was covered including time resolved laser chemistry, intramolecular dynamics, photodissociation dynamics, reactive and inelastic collisions as well as new time dependent methodologies. This diversity in applications is reflected in the contributions included in this volume .
This book provides advanced undergraduate and graduate students with an overview of the fundamentals of cold and ultracold chemistry. Beginning with definitions of what cold and ultracold temperatures mean in chemistry, the book then takes the student through the essentials of scattering theory (classical and quantum mechanical), light-matter interaction, reaction dynamics and Rydberg physics. The author aims to show the reader the richness of the topic while motivating students to understand the fundamentals of these intriguing reactions and underlying connecting relationships. Including material which was previously only found in specialized review articles, this book provides students working in the fields of ultracold gases, chemical physics and physical chemistry with the tools they need to immerse themselves in the realm of cold and ultracold chemistry. This book opens up the exciting chemical laws which govern chemistry at low temperatures to the next generation of researchers. |
You may like...
Advances in Atomic, Molecular, and…
Susanne F Yelin, Louis F. DiMauro, …
Hardcover
R5,103
Discovery Miles 51 030
Advances in Quantum Chemistry, Volume 86
Erkki J. Brandas, Rodney J. Bartlett
Hardcover
R5,223
Discovery Miles 52 230
Exploring Quantum Mechanics - A…
Victor Galitski, Boris Karnakov, …
Hardcover
R6,101
Discovery Miles 61 010
|