![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Atomic & molecular physics
Gets right to the point with step-by-step guidance on solving physics problems. Covers all topics in standard general physics courses in the same sequence. Keeps learning about physics fun and engaging through the story of dinosaurs being tested on their knowledge for a final challenge (deflecting an asteroid headed to Earth!). Enables the reader to quickly flip through and locate steps needed for a particular problem. Includes tons of easy to follow diagrams and worked solutions.
The First Nuclear Era is Alvin Weinberg's autobiography, the memoirs of a most influential American nuclear engineer/physicist. These reminiscences date from the dawning of the nuclear age in the early 1940s to the present. It is the story of one notable scientist's life and times and a look back at one of humankind's most ambitious endeavors: the attempt to harness and safely distribute nuclear power. Weinberg has witnessed and played a major part in many of the defining scientific moments of his era. Here he describes his academic career at the University of Chicago, under the tutelage of Nicolas Rashevsky and Carl Eckart. He recalls his wartime days at the Manhattan Project's Chicago Metallurgical Laboratory where he helped Nobelist Eugene Wigner design the Hanford plutonium producing reactors. He then focuses on what would become the abiding legacy of his professional life: his development of and involvement with nuclear reactors. In discussing both great commercial successes (such as the Light-Water Reactor) and unsuccessful experiments, Weinberg offers an objective critique of the technical and political shortcomings that have haunted the nuclear age. He also demonstrates how the lessons learned from unsuccessful reactors paved the way for later triumphs.
This book reviews the basic models and theories of nuclear structure and gives an in-depth analysis of their experimental and mathematical foundations. It shows the relationships between the models and exhibits the value of following the strategy of: looking for patterns in all the data available, developing phenomenological models to explain them, and finally giving the models a foundation in a fundamental microscopic theory of interacting neutrons and protons. This unique book takes a newcomer from an introduction to nuclear structure physics to the frontiers of the subject along a painless path. It provides both the experimental and mathematical foundations of the essential models in a way that is accessible to a broad range of experimental and theoretical physicists. Thus, the book provides a unique resource and an exposition of the essential principles, mathematical structures, assumptions, and observational data on which the models and theories are based. It avoids discussion of many non-essential variations and technical details of the models.
This book reviews the basic models and theories of nuclear structure and gives an in-depth analysis of their experimental and mathematical foundations. It shows the relationships between the models and exhibits the value of following the strategy of: looking for patterns in all the data available, developing phenomenological models to explain them, and finally giving the models a foundation in a fundamental microscopic theory of interacting neutrons and protons. This unique book takes a newcomer from an introduction to nuclear structure physics to the frontiers of the subject along a painless path. It provides both the experimental and mathematical foundations of the essential models in a way that is accessible to a broad range of experimental and theoretical physicists. Thus, the book provides a unique resource and an exposition of the essential principles, mathematical structures, assumptions, and observational data on which the models and theories are based. It avoids discussion of many non-essential variations and technical details of the models.
Covers the theory of electromagnetic fields in matter, and the
theory of macroscopic electric and magnetic properties of matter.
There is a considerable amount of new material particularly on the
theory of the magnetic properties of matter and the theory
"Blurb & Contents" "Marvelous reading, with few problems of the interaction between science/technology and society left untouched. One need not always agree, but one cannot come away without a better education....I found the parts on scientific administration and on the interaction of science and society excellent and provocative reading, and the parts on energy and nuclear energy very much to the point." American Journal of Physics Alvin Weinberg explores through these collected essays the ever troublesome relationship between science, technology, and society. The title is taken from Weinberg's assertion that most of the issues arising at the intersection of science and society depend upon answers to questions that lie outside the power of science--issues that are trans-scientific. Weinberg, who during World War II helped develop the first nuclear reactors, has much to say on the current role of nuclear power and the possibilities for the future. Other topics include strategic defenses and arms control, the role of the science administrator, and the way in which time, energy, and resources are allocated to public problems. In this remarkable record of a half- century of public-oriented work, Weinberg lays the foundation for a philosophy of scientific administration parallel to the more established philosophy of science.
Into the short compass of this book, Professor Graetz has succeeded in compressing an eminently readable survey of the directions in which the atomic theory, as accepted in the nineteenth century, has been extended by the remarkable and almost revolutionary physical investigations and discoveries of the two decades preceding the book's original publication in 1923.
Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and speculative theory, it indicates in a unique way how the future of physics was perceived at the time of writing. It thus throws into stark relief not only the immense advances made since the 1920s, but also, perhaps, highlights the importance of not rigidly adhering to a particular program of future discoveries.
This book describes the theory of how processes on the unobservable molecular scale give rise to observable effects such as diffusion and electrical noise on the macroscopic or laboratory scale. It puts the modern theory into historical context, and features new applications, statistical mechanics derivations, and the mathematical background of the topic.
This is the third and fully updated edition of the classic textbook on physics at the subatomic level. An up-to-date and lucid introduction to both particle and nuclear physics, the book is suitable for both experimental and theoretical physics students at the senior undergraduate and beginning graduate levels.Topics are introduced with key experiments and their background, encouraging students to think and empowering them with the capability of doing back-of-the-envelope calculations in a diversity of situations. Earlier important experiments and concepts as well as topics of current interest are covered, with extensive use of photographs and figures to convey principal concepts and show experimental data.The coverage includes new material on:Detectors and acceleratorsNucleon elastic form factor dataNeutrinos, their masses and oscillationsChiral theories and effective field theories, and lattice QCDRelativistic heavy ions (RHIC)Nuclear structure far from the region of stabilityParticle astrophysics and cosmology
Modern Trends in Physics Research MTPR-08 was the third of the International Conference series held biannually by the Physics Department in Faculty of Science of Cairo University. The objectives of the conference are to develop greater understanding of physics research and its applications to promote new industries; to innovate knowledge about recent breakthroughs in physics, both the fundamental and technological aspects; to implement of international cooperation in new trends in physics research and to improve the performance of the physics research facilities in Egypt. This proceeding highlights the latest results in the fields of astrophysics, atomic, molecular, condensed matter, lasers, nuclear and particle physics. The peer refereed papers collected in this volume, were written by international experts in these fields. The keynote lecture, "Overview on the Era of the Exploration of the Planets and Planetary Systems," delivered by Professor Jay M Pasachoff of Williams College -- Hopkins Observatory was featured in the proceedings. As 2008 was the 50th anniversary of the launch of Sputnik, which began the Space Age, this volume is a unique collection of keynote, plenary and invited presentations covering fields of astrophysics, atomic physics, condensed matter physics as well as nanotechnology, molecular physics and laser physics. This volume will serve as a useful reference for scientists in modern physics and technology of the 21st century.
Although the current world order is still dominated by the US, there is increasing international concern over the possibility of regional security dilemmas arising from smaller powers' attempts to develop Weapons of Mass Destruction. A study of US-North Korean interaction using the security dilemma as a conceptual frame of analysis is thus not only hugely topical, but also particularly relevant for the 21st century on theoretical as well as empirical grounds. Is there the prospect of a security dilemma contagion if North Korea acquire nuclear weapons capability leading to an Asia Pacific wide nuclear arms race? This book examines this contentious issue in-depth and explores the difficult choices policymakers face as a result of the uncertainty in international politics.
The aim of the workshop was to bring together specialists in various fields where non-exponential relaxation is observed in order to compare models and experimental results and to examine the general physical principles governing this type of behaviour. Non-exponential relaxation is found in extremely diverse physical systems all of which can be classified as complex. The form of the relaxation is generally parametrized using logarithmic, algebraic or stretched exponential decay forms. The conceptually simplest mechanism for the non-exponential decay is a spectrum of relaxation rates due to non-interacting units each of which relaxes with a different intrinsic time constant. Clear experimental examples can be given where for instance the relaxation of a collection of isolated polymer molecules leads to an overall stretched exponential decay. Non-exponential relaxation is observed in all strongly interacting complex systems (structural glasses, spin glasses, etc ... ) where each elementary unit is in interaction with many other units.
This book provides a comprehensive description of topological polymers, an emerging research area in polymer science and polymer materials engineering. The precision polymer topology designing is critical to realizing the unique polymer properties and functions leading to their eventual applications. The prominent contributors are led by Principal Editor Yasuyuki Tezuka and Co-Editor Tetsuo Deguchi. Important ongoing achievements and anticipated breakthroughs in topological polymers are presented with an emphasis on the spectacular diversification of polymer constructions. The book serves readers collectively to acquire comprehensive insights over exciting innovations ongoing in topological polymer chemistry, encompassing topological geometry analysis, classification, physical characterization by simulation and the eventual chemical syntheses, with the supplementary focus on the polymer folding, invoked with the ongoing breakthrough of the precision AI prediction of protein folding. The current revolutionary developments in synthetic approaches specifically for single cyclic (ring) polymers and the topology-directed properties/functions uncovered thereby are outlined as a showcase example. This book is especially beneficial to academic personnel in universities and to researchers working in relevant institutions and companies. Although the level of the book is advanced, it can serve as a good reference book for graduate students and postdocs as a source of valuable knowledge of cutting-edge topics and progress in polymer chemistry.
This book provides a broad and complete introductions to the molecular structure, novel and anomalous properties, nonlinear excitations, soliton motions, magnetization, and biological effects of water. These subjects are described by both experimental results and theoretical analyses. These contents are very interesting and helpful to elucidate and explain the problem of "what is on earth water". This book contains the research results of the author and plenty of scientists in recent decades."Water: Molecular Structure and Properties" is self-contained and unified in presentation. It may be used as an advanced textbook by graduate students and even ambitious undergraduates in Physics and Biology. It is also suitable for the researchers and engineers in Physics, Biology and water science.
This volume presents the latest advancements and future perspectives of atomic, molecular and optical (AMO) physics and its vital role in modern sciences and technologies. The chapters are devoted to a wide range of quantum systems, with an emphasis on the understanding of ionization, high-harmonic generation, molecular orbital imaging and coherent control phenomena originating from light-matter interactions. The book overviews current research landscape and highlight major scientific trends in AMO physics interfacing with interdisciplinary sciences. It may be particularly interesting for young researchers working on establishing their scientific interests and goals.
The physics of open quantum systems plays a major role in modern experiments and theoretical developments of quantum mechanics. Written for graduate students and readers with research interests in open systems, this book provides an introduction into the main ideas and concepts, in addition to developing analytical methods and computer simulation techniques.
The second edition of this highly successful, original text discusses the production and characterization of X-rays. The book focuses on the fundamentals of X-ray physical properties from an experimental viewpoint. SI units are used throughout and the material has been updated thoroughly to reflect the changes in the use of X-rays and recent developments in the field. The text begins with a survey of work conducted before 1945. Continuous and characteristic spectra are discussed, followed by a description of techniques used in their study. Further studies of production, absorption and scattering in atomic and nuclear processes are described, including a completely new chapter on X-ray production by protons, alpha-particles and ions.
Opening Lecture.- The Problem of Mass: From Galilei to Higgs.- Quantum Chromo Dynamics.- QCD Phenomenology: Jet Rates and Truncated Parton Cascades for Massive Hadron Production.- Theoretical Lectures from 10 to 200 TeV.- The Standard Model and Beyond.- Do Weak Interactions become Strong at High Energy?.- Geometry and Quantum Symmetries of Superstring Vacua.- A Duality Between Strings and Fivebranes.- Review Lectures.- Theoretical Implications of Precision Electroweak Data.- Novel Neutrino Physics.- A Solution to the Time Varying Solar Neutrino Problem.- Searching for the Higgs Boson at a Photon-Photon Collider.- Experimental Physics at the Highest Energy (in this Century!).- The Future of High Energy Physics.- The SSC Project and Experimental Program.- Maximizing the Luminosity of Eloisatron, a Hadron Supercollider at 100 TeV per Beam.- New Detectors for Supercolliders: LAA.- Closing Ceremony.- Prizes and Scholarships, etc.- Participants.
Radiation from spectral lines can be absorbed and re- emitted many times in atomic vapours before it reaches the boundaries of the container encasing the vapour. This effect is known as radiation trapping. It plays an important role practically everywhere where atomic vapours occur, e.g. in spectroscopy, in gas lasers, in atomic line filters, in the determination of atomic lifetimes, in measurements of atomic interaction potentials, and in electric discharge lamps. This book for the first time assembles all the information necessary for a treatment of practical problems, emphasizing both physical insights and mathematical methods. After an introduction that reviews resonance radiation and collisional processes in atomic vapours, physical effects and mathematical methods for various types of problems (e.g. with or without saturation, particle diffusion, reflecting cell walls, etc.) are explained in detail. The last part of the book describes the applications of these methods to a variety of practical problems like cross-section measurements or the design of discharge lamps.
Shortlisted for the 2020 AAAS/Subaru SB&F Prize for Excellence in Science Books Creating an element is no easy feat. It's the equivalent of firing six trillion bullets a second at a needle in a haystack, hoping the bullet and needle somehow fuse together, then catching it in less than a thousandth of a second - after which it's gone forever. Welcome to the world of the superheavy elements: a realm where scientists use giant machines and spend years trying to make a single atom of mysterious artefacts that have never existed on Earth. From the first elements past uranium and their role in the atomic bomb to the latest discoveries stretching our chemical world, Superheavy will reveal the hidden stories lurking at the edges of the periodic table. Why did the US Air Force fly planes into mushroom clouds? Who won the transfermium wars? How did an earthquake help give Japan its first element? And what happened when Superman almost spilled nuclear secrets? In a globe-trotting adventure that stretches from the United States to Russia, Sweden to Australia, Superheavy is your guide to the amazing science filling in the missing pieces of the periodic table. By the end you'll not only marvel at how nuclear science has changed our lives - you'll wonder where it's going to take us in the future.
Volume 3 of the 5-volume Quantum Nanochemistry presents the chemical reactivity throughout the molecular structure in general and chemical bonding in particular by introducing the bondons as the quantum bosonic particles of the chemical field, localization, from Huckel to Density Functional expositions, especially in relation to how chemical principles of electronegativity and chemical hardness decide the global chemical reactivity and interaction. The volume presents the fundamental and advanced concepts, principles, and models as well as their first and novel combinations and applications in quantum (physical) chemical theory of bonding, molecular reactivity, and aromaticity.
The book bridges the gap between a course on modern physics and an advanced formal treatise on nuclear physics. The treatment of topics is simple and direct. Physical ideas are given prominence and this has been done by informal discussions and many analogies. It starts with the tools of nuclear physics, both experimental and mathematical. The author has taken special care in treating the nuclear shell model throughout the analogy with atomic and molecular physics. It is a suitable text for any student who has been exposed to a college level course in modern physics and who has mathematical competence at the level of calculus and elementary vector analysis. An important feature of the book is that numerous illustrative examples have been given along with 200 neatly drawn figures and problem question sets.
This book is about several questions regarding how to describe the quantization of the current density in an antenna and about the nature of the quantum electromagnetic field produced by such a quantum current density. The second quantized current density can be built out of the Dirac field of electrons and positrons while the free electromagnetic or photon field is built out of solutions to the wave equation with coefficients being operators, namely the creation and annihilation operators of the photons. Note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
The aim of this book is to present review articles describing the latest theoretical and experimental developments in the field of cold atoms and molecules. Our hope is that this series will promote research by both highlighting recent breakthroughs and by outlining some of the most promising research directions in the field. |
![]() ![]() You may like...
Data Envelopment Analysis with R
Farhad Hosseinzadeh Lotfi, Ali Ebrahimnejad, …
Hardcover
R4,240
Discovery Miles 42 400
Transforming Prejudice - Identity, Fear…
Melissa R. Michelson, Brian F Harrison
Paperback
R718
Discovery Miles 7 180
Transport Phenomena in Multiphase…
Joao M. P. Q. Delgado, Antonio Gilson Barbosa De Lima
Hardcover
|