![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Atomic & molecular physics
Unique in scope and treatment, Theory of Atomic Nuclei, Quasi-particle and Phonons gives a microscopic description of the structure of complex nuclei at low and intermediate excitation energies in terms of quasi-particle and phonon operators. A substantial quantity of modern experimental data is collected together and incorporated into the book to complement the theoretical treatment. This source book is an extremely useful research reference of the results of experimental work in the area.
One of the Top Selling Physics Books according to YBP Library Services Suitable for graduate students, experienced researchers, and experts, this book provides a state-of-the-art review of the non-relativistic theory of high-energy ion-atom collisions. Special attention is paid to four-body interactive dynamics through the most important theoretical methods available to date by critically analyzing their foundation and practical usefulness relative to virtually all the relevant experimental data. Fast ion-atom collisions are of paramount importance in many high-priority branches of science and technology, including accelerator-based physics, the search for new sources of energy, controlled thermonuclear fusion, plasma research, the earth's environment, space research, particle transport physics, therapy of cancer patients by heavy ions, and more. These interdisciplinary fields are in need of knowledge about many cross sections and collisional rates for the analyzed fast ion-atom collisions, such as single ionization, excitation, charge exchange, and various combinations thereof. These include two-electron transitions, such as double ionization, excitation, or capture, as well as simultaneous electron transfer and ionization or excitation and the like-all of which are analyzed in depth in this book. Quantum Theory of High-Energy Ion-Atom Collisions focuses on multifaceted mechanisms of collisional phenomena with heavy ions and atoms at non-relativistic high energies.
The electron is fundamental to almost all aspects of modern life, controlling the behavior of atoms and how they bind together to form gases, liquids, and solids. Flash of the Cathode Rays: A History of J.J. Thomson's Electron presents the compelling story of the discovery of the electron and its role as the first subatomic particle in nature. The book traces the evolution of the concept of electrical charge, from the earliest glow discharge studies to the final cathode ray and oil drop experiments of J.J. Thomson and Robert Millikan. It also provides an overview of the history of modern physics up to the advent of the old quantum theory around 1920. Consolidating scholarly material while incorporating new material discovered by the well-respected author, the book covers the continental and English race for the source of the cathode rays, culminating in Thomson's corpuscle in 1897. It explores the events leading to Millikan's unambiguous isolation of the electron and the simultaneous circumstances surrounding the birth of Ernest Rutherford's nuclear atom and the discovery of radioactivity in 1896. The author also focuses on the controversies over N-rays, Becquerel's positive electron, and the famous Ehrenhaft-Millikan dispute over subelectrons. Scholarly yet accessible to those with basic physics knowledge, this book should be of interest to historians of science, professional scientists and engineers, teachers and students of physics, and general readers interested in the development of modern physics.
Reflecting the growing importance of multi-mode transmission media
in communications, radar, sensors, remote sensing, and many other
industrial applications, this work presents analytic methods for
calculating the transmission statistics of microwave and optical
components with random imperfections.
Choice Recommended Title, January 2020 Providing a vital resource in tune with the massive advancements in accelerator technologies that have taken place over the past 50 years, Accelerator Radiation Physics for Personnel and Environmental Protection is a comprehensive reference for accelerator designers, operators, managers, health and safety staff, and governmental regulators. Up-to-date with the latest developments in the field, it allows readers to effectively work together to ensure radiation safety for workers, to protect the environment, and adhere to all applicable standards and regulations. This book will also be of interest to graduate and advanced undergraduate students in physics and engineering who are studying accelerator physics. Features: Explores accelerator radiation physics and the latest results and research in a comprehensive single volume, fulfilling a need in the market for an up-to-date book on this topic Contains problems designed to enhance learning Addresses undergraduates with a background in math and/or science
A technique that is useful in the study of pharmaceutical products and biological molecules, polarization IR spectroscopy has undergone continuous development since it first emerged almost 100 years ago. Capturing the state of the science as it exists today, Linearly Polarized IR Spectroscopy: Theory and Applications for Structural Analysis demonstrates how the technique can be properly utilized to obtain important information about the structure and spectral properties of oriented compounds. The book starts with the theoretical basis of linear-dichroic infrared (IR-LD) spectroscopy and then moves on to examine the background of the orientation method of colloid suspensions in a nematic host. It explores the orientation procedure itself, experimental design, and mathematical tools for the interpretation of the IR spectroscopic patterns. Next, the authors describe the structural elucidation of inorganic and organic compounds and glasses. Finally, they discuss applications in pharmaceutical analysis and the chemistry of dyes. Filled with more than 140 illustrations along with a color insert, the book explains both the scope of the polarized IR spectroscopy method as well as its limitations. A powerful source of information not only for specialists in IR spectroscopy, but also for those working in the field of structural analysis, this volume moves the field closer to developing an inherently classical method for the structural characterization of compounds.
Molecular Dynamics in Restricted Geometries Edited by Joseph Klafter and J. M. Drake This investigation of the chemistry and physics of complex systems focuses on the role of spatial restrictions on molecular movement. A practical source-book for researchers in chemical physics, chemical engineering, and condensed matter physics, and for graduate students in these fields, it covers a broad range of topics and critically evaluates methods as they are employed. Among the many topics it covers are: relaxation and diffusion in restricted geometries, excitation energy transfer and photoinduced electron transfer phenomena in some confined systems, electron excitation transport in micelles, polymers and multilayers, and electron excitation transport on polymer chains. 1989 (0 471-60176-4) 437 pp.
This fourth edition of Peter Bernath's successful Spectra of Atoms and Molecules is designed to provide advanced undergraduate and graduate students a working knowledge of the vast field of spectroscopy. Also of interest to chemists, physicists, astronomers, atmospheric scientists, and engineers, this volume emphasizes the fundamental principles of spectroscopy with the primary goal of teaching the interpretation of spectra. Features include a presentation of group theory as needed to understand spectroscopy, detailed worked examples and a large number of excellent problems at the end of each chapter. Bernath provides a large number of diagrams and spectra which have been specifically recorded for this book. Molecular symmetry, matrix representation of groups, quantum mechanics, and group theory are among the topics covered; atomic, rotational, vibrational, electronic and Raman spectra are analyzed as well. Bernath's treatment clears the confusing topic of line strengths as needed for quantitative applications. Responding to student requests, the fourth addition features detailed and worked examples in each chapter. This book has also been updated to include the 2018 CODATA revision of physical constants and a large number of corrections and clarifications. New chapters on atmospheric and astronomical spectroscopy have been added. Spectra of Atoms and Molecules demystifies spectroscopy by showing readers the intermediate steps in a derivation, as well as the final result.
This book presents the survismeter, a new invention that widely covers and determines PCPs of various molecules and experimentally measures the thermodynamic and kinetic stabilities of nanoemulsions. It unveils how a survismeter can measure surface tension, interfacial tension, wettability, viscosity, friccohesity, tentropy, rheology, density, activation energy, and particle size. It discusses novel models of molecular science that can be applied in the formulation and study of activities of functional molecules through their PCPs. It also introduces the new concept of friccohesity, which has emerged as an excellent substitute of viscosity and surface tension in experimental measurements as it does not require density measurements. It shows that the science and technology of the survismeter and friccohesity have become an inevitable part of scientific research, substantially integrating the domain of perfect industrial and academic formulations.
Volume II/26 supplements the previous compilations II/l, II/9 and II/17 of the magnetic properties of free radicals which were published in 1965, 1977-1980 and 1986-90. In the form of books and CD ROM it covers the literature from about 1985 to 2001. Due to the still rapid growth of the field and the necessary inclusion of new subjects the volume is divided into subvolumes which will appear in fast succession. Together with the earlier publications volume II/26 offers an up-to-date and comprehensive survey and collection of structures and data on the important chemical intermediates, namely radicals, polyradicals and related species such as carbenes, nitrenes, etc. As before the species have been grouped according to chemical aspects. The contents of the individual subvolumes are indicated on the inside of the front covers. For each group of substances the literature has been compiled and extracted by experts in the fields. A small overlap between the chapters is intentional and allows a maximum of coherence and comprehensiveness of the display. For the reader's convenience an index of substances follows in the last subvolume. Data retrieval is also facilitated by helpful links in the CD ROM version. We wish to thank all the authors for their careful and experienced work and the most agreeable cooperation, the Landolt- Bornstein office, especially Mrs. A."
Nuclear physics is an exciting, broadly faceted field. It spans
a wide range of topics, reaching from nuclear structure physics to
high-energy physics, astrophysics and medical physics (heavy ion
tumor therapy). New developments are presented in this volume and
the
First published in 1967. The impression is sometimes given that the Atomic Theory was revived in the early years of the nineteenth century by John Dalton, and that continuously from then on it has played a vital role in chemistry. The aim of this study is to revise this over-simplified picture. Atomic explanations seemed to chemists to go beyond the facts, to fail to lend themselves to mathematical expression, and to deny the ultimate simplicity and unity of all matter. Most, therefore, rejected them. Meanwhile, physicists were developing a whole range of atomic theories to explain the physical properties of bodies in terms of very simple atoms or particles. During the last thirty years of the century the position changed, as physicists and chemists came to agree on a common atomic theory. But the last prominent opponents of atomism were not converted until the early years of the twentieth century, by which time studies of radioactivity had made it clear that the billiard-ball Daltonian atom must, in any case, be abandoned.
This book focuses on the main idea that highly-excited molecular vibration is a nonlinear, many-body and semiclassical system. Therefore, many ideas and techniques in nonlinear fields such as chaos, resonance, Lyapunov exponent, etc. can be incorporated into this study. Together with the Lie algebraic coset algorithm, readers are able to approach the topics in a simple arithmetic and realistic way in contrast to the traditional solving of Schroedinger equation.Covering the author's research in over two decades, these works bridge the gaps between molecular vibration and nonlinear sciences, many new characters are introduced for molecular highly-excited vibration from a fresh viewpoint of nonlinearity, especially, the chaos. Related works of the elementary ideas in this field can be found in the first three chapters for the readers to be familiar with, while the rest of the chapters offer concrete examples with flourishing ideas and results on system dynamics which are not known or neglected by the traditional wave function algorithm.
This is a review volume covering a wide range of topics in this newly developed research field. The intended audience corresponds to graduate students, post-docs and colleagues working in the field of cold atomic gases. This is the first review volume dedicated to this active research frontier, and provides a comprehensive and pedagogical summary of recent progresses in the field.
Experiments in Nuclear Science is an introductory-level laboratory manual providing hands-on opportunities for developing insights into the origins and properties of nuclear radiations, their interactions with matter, their detection and measurement, and their applications in the physical and life sciences. Based on experiments successfully performed by hundreds of students at Rutgers University and the University of Wisconsin, this manual can be used as a stand-alone volume or alongside a textbook such as Introduction to Nuclear Science by Jeff C. Bryan. Relevant to a range of courses Each of the 32 exercises includes an overview of the scientific phenomenon, instructions for conducting the experiments and recording the data, directions for analyzing the data and reporting the results, specific questions relating to the experiments, and several problems relating to the scientific phenomena being investigated. Validated for safety and pedagogy in the undergraduate instructional laboratory, the exercises can be used in an undergraduate course in nuclear science. Individual exercises can also be adopted to demonstrate fundamental principles in a general science course as well as introductory biology and chemistry courses. Making use of off-the-shelf instrumentation, these exercises can be performed in a conventional laboratory under the supervision of an experienced instructor. Applicable to numerous career fields Demonstrating fundamental principles, the concepts explored through these experiments are relevant to a host of career opportunities, including those in the health sciences, the nuclear power industry, regulatory agencies, and waste management services.
Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field.
Following the path by which humanity learned quantum mechanics can lead to an improved teaching and understanding of the fundamental theory and the origins of its perceived limitations. The purpose of this textbook is to retrace the development of quantum mechanics by investigating primary sources (including original published papers and letters) with attention to their timing and influence. Placing the development of quantum mechanics in its historical context, from the nascent philosophical notions of matter, atoms, and void in Ancient Greece, to their scientific realization in the 19th and 20th centuries, the book culminates with an examination of the current state of the field and an introduction to quantum information and computing.
Presenting the proceedings of FPCP 2018, this book reviews the status quo of flavor physics and discusses the latest findings in this exciting area. Flavor physics has been instrumental in the formulation and understanding of the standard model, and it is possible that the direction of new physics will be significantly influenced by flavor sector, also known as the intensity frontier, making it possible to indirectly test the existence of new physics up to a very high scale, beyond that of the energy frontier scale accessible at the LHC. The book is intended for academics around the globe involved in particle physics research, professionals associated with the related technologies and those who are interested in learning about the future of physics and its prospects and directions.
This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A,B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access.
Iran s nuclear program has generated intense controversy ever since the International Atomic Energy Agency reported in 2003 that Iran was secretly pursuing enrichment activities. Although Iranian officials insist the program is peaceful, many in the international community are skeptical of Iran s stated aims and some allege there is no greater nuclear-weapons proliferation danger in the world today. Nuclear Iran" guides readers through the intricate maze of science and secrecy that lies at the heart of Iran s nuclear ambitions. Writing for the general reader, Jeremy Bernstein brings his knowledge as a physicist to bear on the issues, offering elucidations of the scientific principles and technical hurdles involved in creating nuclear reactors and bombs. His explanations range from the physics of fission to methods of isotope separation to the technologies required for weaponizing fissile uranium and plutonium. Iran s construction of centrifuges capable of producing weapons-grade uranium has received much media attention, and Bernstein explains how these complex devices work. He intersperses many elements of the human story into his discussions of technology, such as the fact that centrifuges were first invented by German war prisoners working in the Soviet Union. Nuclear Iran "turns a spotlight on the controversial underground uranium-enrichment facility in Natanz and heavy water reactor in Arak, and profiles key figures in the ongoing international trade in weapons technology, including the Pakistani physicist A. Q. Khan. This succinct book is timely reading for anyone who wishes to understand the science behind the international crisis surrounding Iran s nuclear program."
Understanding Molecular Simulation: From Algorithms to Applications
explains the physics behind the "recipes" of molecular simulation
for materials science. Computer simulators are continuously
confronted with questions concerning the choice of a particular
technique for a given application. A wide variety of tools exist,
so the choice of technique requires a good understanding of the
basic principles. More importantly, such understanding may greatly
improve the efficiency of a simulation program. The implementation
of simulation methods is illustrated in pseudocodes and their
practical use in the case studies used in the text.
This study focuses on the development and application of computer models for the analysis of various solid materials at the atomic, molecular and macroscopic levels. Many of the papers incorporate environmental effects in the computer models, including space effects such as atomic oxygen, radiation, charged ions, microparticle impacts, temperature and photoexcitation. To better understand the topics covered and their interaction with the various elements presented, the book incorporates a flowchart detailing the contents of the papers and their relationship to the subject areas. The three main sections of the book cover: atomic and molecular processes; electronic structure and processes; and structure and properties.
This text presents an introduction to the field of statistical physics of macromolecules, from the basic concepts to modern achievements. Applications in various fields of polymer physical chemistry and molecular biophysics are also covered, as are: the fundamentals of statistical theory of polymer solutions and melts; classical, sealing and renormalization group approaches; the main ideas of statistical theories of polymer liquid crystals, polymer networks and polyelectrolytes; dynamic viscoelastic behavior of polymer systems; models of house, Zimm and reptation concepts; and specific features of main biopolymers - DNA and proteins. This English edition also includes sections describing the most important recent advances such as: statistical theory of DNA gel-electrophoresis, polymers at interfaces, and dynamics of concentrated solutions of rigid polymers.
Berry phase has been widely used in condensed matter physics in the past two decades. This volume is a timely collection of essential papers in this important field, which is highlighted by 2016 Nobel Prize in physics and recent exciting developments in topological matters. Each chapter has an introduction, which helps readers to understand the reprints that follow. |
![]() ![]() You may like...
Chemical Physics and Quantum Chemistry…
Erkki J. Brandas, Kenneth Ruud
Hardcover
R5,787
Discovery Miles 57 870
Advances in Atomic, Molecular, and…
Susanne F Yelin, Louis F. DiMauro, …
Hardcover
R5,990
Discovery Miles 59 900
Advances in Atomic, Molecular, and…
Susanne F Yelin, Louis F. DiMauro, …
Hardcover
R5,296
Discovery Miles 52 960
Quantum Boundaries of Life, Volume 82
Roman R. Poznanski, Erkki J. Brandas
Hardcover
R5,800
Discovery Miles 58 000
Advances in Atomic, Molecular, and…
Susanne F Yelin, Louis F. DiMauro, …
Hardcover
R5,292
Discovery Miles 52 920
|