![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Atomic & molecular physics
Plasma Atomic Physics provides an overview of the elementary processes within atoms and ions in plasmas, and introduces readers to the language of atomic spectra and light emission, allowing them to explore the various and fascinating radiative properties of matter. The book familiarizes readers with the complex quantum-mechanical descriptions of electromagnetic and collisional processes, while also developing a number of effective qualitative models that will allow them to obtain adequately comprehensive descriptions of collisional-radiative processes in dense plasmas, dielectronic satellite emissions and autoionizing states, hollow ion X-ray emissions, polarized atoms and ions, hot electrons, charge exchange, atomic population kinetics, and radiation transport. Numerous applications to plasma spectroscopy and experimental data are presented, which concern magnetic confinement fusion, inertial fusion, laser-produced plasmas, and X-ray free-electron lasers' interaction with matter. Particular highlights include the development of quantum kinetics to a level surpassing the almost exclusively used quasi-classical approach in atomic population kinetics, the introduction of the recently developed Quantum-F-Matrix-Theory (QFMT) to study the impact of plasma microfields on atomic populations, and the Enrico Fermi equivalent photon method to develop the "Plasma Atom", where the response properties and oscillator strength distribution are represented with the help of a local plasma frequency of the atomic electron density. Based on courses held by the authors, this material will assist students and scientists studying the complex processes within atoms and ions in different kinds of plasmas by developing relatively simple but highly effective models. Considerable attention is paid to a number of qualitative models that deliver physical transparency, while extensive tables and formulas promote the practical and useful application of complex theories and provide effective tools for non-specialist readers.
New Edition: Facts and Mysteries in Elementary Particle Physics (Revised Edition)This book provides a comprehensive overview of modern particle physics accessible to anyone with a true passion for wanting to know how the universe works. We are introduced to the known particles of the world we live in. An elegant explanation of quantum mechanics and relativity paves the way for an understanding of the laws that govern particle physics. These laws are put into action in the world of accelerators, colliders and detectors found at institutions such as CERN and Fermilab that are in the forefront of technical innovation. Real world and theory meet using Feynman diagrams to solve the problems of infinities and deduce the need for the Higgs boson.Facts and Mysteries in Elementary Particle Physics offers an incredible insight from an eyewitness and participant in some of the greatest discoveries in 20th century science. From Einstein's theory of relativity to the elusive Higgs particle, this book will fascinate and educate anyone interested in the world of quarks, leptons and gauge theories.This book also contains many thumbnail sketches of particle physics personalities, including contemporaries as seen through the eyes of the author. Illustrated with pictures, these candid sketches present rare, perceptive views of the characters that populate the field.The Chapter on Particle Theory, in a pre-publication, was termed "superbly lucid" by David Miller in Nature (Vol. 396, 17 Dec. 1998, p. 642).
This text provides the reader with a comprehensive understanding of the key ideas behind the physics of particle accelerators. Supported by a clear mathematical treatment and a range of calculations which develop a genuine feeling for the subject, it is a thorough introduction to the many aspects of accelerator physics.
The book summarises contemporary knowledge about the theory of atomic and molecular clusters. New results are discussed on a high theoretical level. Access to this field of research is given by an explanation of the various subjects in introductory chapters.
As well as providing a unified outlook on physics, Information Theory (IT) has numerous applications in chemistry and biology owing to its ability to provide a measure of the entropy/information contained within probability distributions and criteria of their information "distance" (similarity) and independence. Information Theory of Molecular Systems applies standard IT to classical problems in the theory of electronic structure and chemical reactivity.
Part I is devoted to Niels Bohr's mission to promote an "open
world" between nations, that is, full sharing of information in the
scientific and technical, as well as in the cultural spheres the
scientific and technical, as well as in the cultural spheres. He
started his mission immediately upon escaping from Nazi-occupied
Denmark in the autumn of 1943, when he realized that the bomb was
on the way to becoming a reality. As he wrote in 1944, he
considered that the existence of the atomic bomb "would not only
seem to necessitate but should also, due to the urgency of mutual
confidence, facilitate" the realization of an open world. During
the Second World War, while being actively involved in the Allied
atomic bomb project, Bohr was able to obtain access to Prime
Minister Churchill and President Roosevelt to promote his view.
After the war he continued his confidential approaches to the
statesmen while publishing more generally oriented articles on the
issue.
This first open access volume of the handbook series contains articles on the standard model of particle physics, both from the theoretical and experimental perspective. It also covers related topics, such as heavy-ion physics, neutrino physics and searches for new physics beyond the standard model. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A,B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access.
This book explores the relationship of several of Dickens's texts
(Nicholas Nickleby, A Christmas Carol, Little Dorrit and Our Mutual
Friend) with the system of finance capitalism, both as reflections
of the evolution of that system, and as attempts to shape and
influence, if not the system itself, at least public opinion about
the system and the actions of those who participated in it.
Specifically, the book examines elements of Dickens's work that
form a critique of financial capitalism. Dickens's critique is
rooted in the difference between use-value and exchange-value, and
in the difference between productive circulations and mere
accumulation. The critique details how, in a money-based society,
exchange-value and accumulation become dominant to the point where
they infect even the most important social relations.
Supersymmetry (SUSY) is one of the most important ideas ever conceived in particle physics. It is a symmetry that relates known elementary particles of a certain spin to as yet undiscovered particles that differ by half a unit of that spin (known as Superparticles). Supersymmetric models now stand as the most promising candidates for a unified theory beyond the Standard Model (SM). SUSY is an elegant and simple theory, but its existence lacks direct proof. Instead of dismissing supersymmetry altogether, Supersymmetry Beyond Minimality: from Theory to Experiment suggests that SUSY may exist in more complex and subtle manifestation than the minimal model. The book explores in detail non-minimal SUSY models, in a bottom-up approach that interconnects experimental phenomena in the fermionic and bosonic sectors. The book considers with equal emphasis the Higgs and Superparticle sectors, and explains both collider and non-collider experiments. Uniquely, the book explores charge/parity and lepton flavour violation. Supersymmetry Beyond Minimality: from Theory to Experiment provides an introduction to well-motivated examples of such non-minimal SUSY models, including the ingredients for generating neutrino masses and/or relaxing the tension with the heavily constraining Large Hadron Collider (LHC) data. Examples of these scenarios are explored in depth, in particular the discussions on Next-to-Minimal Supersymmetric SM (NMSSM) and B-L Supersymmetric SM (BLSSM).
Written to provide students who have limited backgrounds in the physical sciences and math with an accessible textbook on nuclear chemistry and physics, Introduction to Nuclear Science, Fourth Edition continues to provide a clear and complete introduction to nuclear chemistry and physics, from basic concepts to nuclear power and medical applications. Incorporating suggestions from adopting professors and collaborations with the U.S. Department of Energy funded and American Chemical Society sponsored Nuclear Chemistry Summer School, a new chapter on nuclear structure is now included. Also new to this edition: A section covering mass excess calculations Isochron dating of rocks The section on statistics is completely re-written to better align with conventional instruction Expanded discussion of recent changes in the nuclear power industry and nuclear medicine This book covers energetics, nuclear stability and structure, radioactive decay and reactions, interactions of radiation with matter, detection methods, and safety measures, including monitoring and regulations. This updated, expanded edition provides a much-needed textbook and resource for undergraduate students in science and engineering as well as those studying nuclear medicine and radiation therapy.
From superstring theory to models with extra dimensions to dark matter and dark energy, a range of theoretically stimulating ideas have evolved for physics beyond the standard model. These developments have spawned a new area of physics that centers on the interplay between particle physics and cosmology-astroparticle physics. Providing the necessary theoretical background, Particle and Astroparticle Physics clearly presents the many recent advances that have occurred in these fields. Divided into five parts, the book begins with discussions on group and field theories. The second part summarizes the standard model of particle physics and includes some extensions to the model, such as neutrino masses and CP violation. The next section focuses on grand unified theories and supersymmetry. The book then discusses the general theory of relativity, higher dimensional theories of gravity, and superstring theory. It also introduces various novel ideas and models with extra dimensions and low-scale gravity. The last part of the book deals with astroparticle physics. After an introduction to cosmology, it covers several specialized topics, including baryogenesis, dark matter, dark energy, and brane cosmology. With numerous equations and detailed references, this lucid book explores the new physics beyond the standard model, showing that particle and astroparticle physics will together reveal unique insights in the next era of physics.
This book provides a thorough introduction to the phenomenology of heavy flavour physics, those working on the B-factories, LHCb, BTeV, HERA and the Tevatron. It explains how heavy quark theory could be implemented on the lattice, and discusses the status of CP-violation in the neutral kaon system.
Rufus Ritchie, a Gentleman and a Scholar, Volume 80 in the Advances in Quantum Chemistry series, celebrates the life and work of Rufus Ritchie, one of the great physicists and gentlemen of the past 100 years. Sections cover Inelastic electron excitation of transition metal atoms on metal surfaces: Kondo resonances as a function of the crystal field splitting, Role of local field effects in surface plasmon characteristics, Correlated model atom in a time-dependent external field: Sign effect in the energy shift, Dipole-bound states contributions to the formation of anionic carbonitriles in the ISM: a multireference approach for C3N, and much more.
The unexpected recent discovery and synthesis of a new form of elemental carbon has initiated an abundance of papers on all aspects of the chemistry and physics of the carbon family. Carbon Molecules and Materials takes stock of the current understanding of these various solid forms and, more particularly, of the diamond, graphite and fullerenes. After a historical background on the main properties of the element and on the latest discoveries in the field of fullerene, the chapters review the chemical and physical aspects of the allotropic forms. It describes the various properties such as thermodynamic, chemical, structural, electronic, electrical, optical and magnetic, and discusses current and potential applications. Written by scientists active in physical and chemical research on the various forms of carbon and closely related fields, the book presents a wealth of information on data and results for students and researchers interested in materials science and in the applications of advanced materials.
Atomic clusters are aggregates of atoms containing a few to several thousand atoms. Due to the small size of these pieces of matter, the properties of atomic clusters in general are different from those of the corresponding material in the macroscopic bulk phase. This monograph presents the main developments of atomic clusters and the current status of the field. The book treats different types of clusters with very different properties: clusters in which the atoms or molecules are tied by weak van der Waals interactions, metallic clusters, clusters of ionic materials, and network clusters made of typical covalent elements. It includes methods of experimental cluster synthesis as well as the structural, electronic, thermodynamic and magnetic properties of clusters, covering both experiments and the theoretical work that has led to our present understanding of the different properties of clusters. The question of assembling nanoclusters to form solids with new properties is also considered.Having an adequate knowledge of the properties of clusters can be of great help to any scientist working with objects of nanometric size. On the other hand, nanoclusters are themselves potentially important in fields like catalysis and nanomedicine.
Literally thousands of elementary particles have been discovered over the last 50 years, their properties measured, relationships systematized, and existence and behavior explained in a myriad of cleverly constructed theories. As the field has grown so impressively, so has its jargon. Until now, scientists in other fields have had no single resource from which they can quickly reference an idea, acronym, or term and find an accessible definition and explanation.
Electron Energy Loss Spectroscopy (EELS) is a high resolution technique used for the analysis of thin samples of material. The technique is used in many modern transmission electron microscopes to characterise materials. This book provides an up-to-date introduction to the principles and applications of EELS. Specific topics covered include, theory of EELS, elemental quantification, EELS fine structure, EELS imaging and advanced techniques.
The violation of charge-conjugation and parity symmetries is a leading area of research in particle and nuclear physics, with important implications for understanding the generation of matter in the universe. CP violation occurs during the decay of the elementary particles known as kaons and the process remains little understood. This book provides a self-contained introduction to CP violation. It outlines the underlying theory and related experiments, and its systematic approach is designed to bring beginning researchers to the forefront of the field.
This study of Australian business institutions and practices places
the rise of big business in Australia in a comparative context
through a study of its 100 largest firms in the first six and a
half decades of the 20th century.
Reflecting the growing importance of multi-mode transmission media
in communications, radar, sensors, remote sensing, and many other
industrial applications, this work presents analytic methods for
calculating the transmission statistics of microwave and optical
components with random imperfections.
The latest developments in quantum and classical molecular dynamics, related techniques, and their applications to several fields of science and engineering. Molecular simulations include a broad range of methodologies such as Monte Carlo, Brownian dynamics, lattice dynamics, and molecular dynamics (MD). Features of this book: - Presents advances in methodologies, introduces quantum methods and lists new techniques for classical MD - Deals with complex systems: biomolecules, aqueous solutions, ice and clathrates, liquid crystals, polymers - Provides chemical reactions, interfaces, catalysis, surface phenomena and solids Although the book is not formally divided into methods and
applications, the chapters are arranged starting with those that
discuss new algorithms, methods and techniques, followed by several
important applications.
Lasers in Analytical Atomic Spectroscopy Edited by Joseph Sneddon • Terry L. Thiem • Yong-Ill Lee This book focuses primarily on the use of lasers in analytical atomic spectroscopy with optical detection, and also includes a chapter describing the use of lasers in inductively coupled plasma—mass spectroscopy (ICP—MS). The book begins with a brief introduction to atomic spectroscopy and lasers, providing the reader with basic theory and information on instrumentation in conventional atomic spectroscopy. Next, the properties, types, and principles of lasers are discussed using a non-mathematical approach. The main section of the book provides detailed descriptions of the four major areas of laser application in analytical atomic spectroscopy, each discussed by an expert in the field: laser excited atomic fluorescence spectrometry (LEAFS); laser ablation for sample introduction, particularly in inductively coupled plasma—atomic emission spectrometry (ICP—AES) and ICP—MS; laser induced breakdown (emission) spectrometry (LIBS); and laser-enhanced ionization (LEI) spectrometry. Lasers in Analytical Atomic Spectroscopy will be of interest to spectroscopists, analytical chemists, and graduate students in these areas. Also available from VCH Applied Laser Spectroscopy Techniques, Instrumentation, and Applications D.L. Andrews, ed. Hardcover. ISBN 1-56081-023-8 Inductively Coupled Plasmas in Analytical Atomic Spectroscopy Second, Revised and Enlarged Edition A. Montaser and D.W. Golightly, eds. Hardcover. ISBN 1-56081-514-0 Atomic Absorption Spectrometry Second, Completely Revised Edition B. Welz Hardcover. ISBN 3-527-26193-1
This volume is divided into five parts. The title of the volume refers primarily to part I, which is by far the largest and comprises papers discussing the fundamental questions of biology and related psychological and philosophical problems. Following the reproduction of papers brought to publication by Bohr, there is a separate Appendix to Part I including some of Bohr's most interesting and substantive unpublished contributions in this area. The papers in Part I span the last thirty years of Bohr's life and display his great interest in biological problems and his unremitting efforts to show that biology cannot be reduced to physics and chemistry.
|
![]() ![]() You may like...
Research Handbook on Disability and…
Shumaila Yousafzai, Wilson Ng, …
Hardcover
R4,807
Discovery Miles 48 070
|