![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Atomic & molecular physics
PAVI09 Proceedings of the 4th International Workshop "From Parity Violation to Hadronic Structure and more..." held in Bar Harbor, Maine, USA, 22-26 June 2009 Main topic: Parity Violation in the Electro-Weak Interactions and Other Low-Energy Tests of the Standard Model, including: Overview of the experimental program, Strangeness in the nucleon: experiment and theory, Standard Model tests, Hadronic Parity Violation, Probing two-photon exchange effects, Electro-weak radiative corrections involving hadronic structure, Technical developments, Neutrinos, beta decay and electric dipole moments. Reprinted from Hyperfine Interactions Vol. 200:1-3 and Vol. 201:1-3 .
Quantum correlations are not restricted to the well known entanglement investigated in Bell-type experiments. Other forms of correlations, for example quantum discord, have recently been shown to play an important role in several aspects of quantum information theory. First experiments also support these findings. This book is an introduction into this up-and-coming research field and its likely impact on quantum technology. After giving a general introduction to the concept of quantum correlations and their role in quantum information theory, the author describes a number of pertinent results and their implications.
Originally published in 1937, this book is the second of two volumes discussing the spectra of the various atomic elements. Volume Two addresses complex spectra, including rare earths and fluorescent crystals. This book will be of value to anyone with an interest in the history of science.
This book has come into being as a result of scientific debates. And these debates have determined its structure. The first chapter is in the form of Socratic dialogues between a mathematician (MATH.), two physicists (pHYS. and EXP.) and a philosopher (PHIL.). However, although one of the authors is a theoretical physicist and the other a mathematician, the reader must not think that their opinions have been divided among the participants of the dialogues. We have tried to convey the inner tension of the topic under discussion and its openness. The attitudes of the participants reflect more the possible evaluations of the situation rather than the actual views of the authors. What is more, the subject "elementary particles" as dealt with in the 3 6 dialogue stretches over (2-3) 10 years of historical time and a space of 10 +/-1 pages of scientific literature. For this reason, a complete survey of it is un achievable. But, of course, every researcher constructs his own history of his science and sees a certain list of its main pOints. We have attempted to float several possible pictures of this kind. Therefore the fact that Math and Phys talk about the history of element ary particles is not an attempt to present the scientific history of this realm of physics.
Advanced experimental techniques make quantum optics one of the most active fields in probing the fundamental laws of quantum theory. The contributions collected in this volume, by both theoreticians and experimentalists, give an overview of the most recent developments in fundamental quantum optics. Of particular interest is the physics of cooled and trapped particles. Other topics include atomic interferometry, quantum electrodynamics in a cavity, quantum measurement and much more. The level of presentation makes this book intelligible not only to the expert but also to a wide readership from engineering and physics.
This volume comprises the recent development in the theoretical and
experimental progress dedicated to trapped charged particles and
related fundamental physics and applications. The content has been
divided topic-wise covering basic questions of Fundamental Physics,
Quantum and QED Effects, Plasmas and Collective Behavior and
Anti-Hydrogen. More technical issues include Storage Ring Physics,
Precision Spectroscopy and Frequency Standards, Highly Charged Ions
in Traps, Traps for Radioactive Isotopes and New Techniques and
Facilities. An applied aspect of ion trapping is discussed in
section devoted to Applications of Particle Trapping including
Quantum Information, Chemistry and Trace Analysis. Each topic has a
more general introduction, but also more detailed contributions are
included. A selection of contributions exemplifies the
interdisciplinary nature of the research on trapped charged
particles worldwide.
The existence of jets emanating from the central sources of radio galaxies and quasars was perhaps the most important discovery for our understanding of the nature of active galactic nuclei. These proceedings present reviews and research papers on extragalactic radio sources. The book begins witha discussion of the phenomenology and models of radio sources. The main partis devoted to detailed studies of jets by VLBI, to the information obtained about the structure of the central source as deduced from variability studies, to production, confinement and velocity of jets as well as to numerical simulations of the jet phenomenon. Reviews of the two best studied jets - those in the radio galaxy M87 and the quasar 3C273 - illustrate our current observational picture of extragalactic radio jets in all accessible wavelength ranges. A section on the influence of the environment on radio galaxies concludes the book. This topical volume addresses researchers and graduate students in astrophysics.
In the last twenty years polarized beams of slow neutrons have been used effectively in fundamental research in nuclear physics. Parity violation in nuclear fission and neutron optics was discoverd as well as the nuclear precession of neutrons and the coherent interference of spin channels in neutron capture by nuclei. Furthermore, these methods helped to understand better the neutron`s electric dipole moment and its beta decay. This book gives a thorough introduction to these experimental methods including the most recent techniques of generating and analyzing polarized neutral beams. It clearly shows the close relationship between elementary particle physics and nuclear physics, in particular in the section dealing with the effects caused by weak interactions. Special attention is paid to experiments which investigate the violation of quantum mechanical conservation laws. The book not only addresses specialists but also those interested in the foundations of elementary particle and nuclear physics. It is well suited as additional reading for students.
Single-molecule studies constitute a distinguishable category of focused - search in nanoscience and nanotechnology. This book is dedicated to the - troduction of recent advances on single-molecule studies. It will be illustrated that studying single molecules is both intellectually and technologically ch- lenging, and also o?ers vast potential in opening up new scienti?c frontiers. We wish to present the readers with several di?erent techniques for studying single molecules, such as electron-tunneling methods, interaction-force m- surement techniques, optical spectroscopy, plus a number of directions where further progress could be pursued. We hope the work may assist the readers, especially graduate students and those who wish to explore single molecules, to become familiarized with the pace of the progress in this ?eld and the relevant primary techniques. Due to limitation of space, we are not able to elaborate on the technical details of all of the experimental methods that are vital in single molecule studies, so introductions to only selected experimental methods are touched in the context. Since the technical details and theoretical analysis of these techniqueshavealreadybeenthoroughlycoveredinmanyliteratures,weonly provide introductions to the basic principles of the detection techniques here, and focus on their experimental achievements in the area of single-molecule studies. These techniques have proven to be highly e?ective when indep- dently used. The combinationof those techniques could lead to further - vances in the detection capabilities.
In Single Molecule Studies of Proteins, expert researchers discuss the successful application of single-molecule techniques to a wide range of biological events, such as the imaging and mapping of cell surface receptors, the analysis of the unfolding and folding pathways of single proteins, the analysis interaction forces between biomolecules, the study of enzyme catalysis or the visualization of molecular motors in action. The chapters are aimed at established investigators and post-doctoral researchers in the life sciences wanting to pursue research in the various areas in which single-molecule approaches are important; this volume also remains accessible to advanced graduate students seeking similar research goals.
On June 19th 1999, the European Ministers of Education signed the Bologna Dec laration, with which they agreed that the European university education should be uniformized throughout Europe and based on the two cycle bachelor master's sys tem. The Institute for Theoretical Physics at Utrecht University quickly responded to this new challenge and created an international master's programme in Theoret ical Physics which started running in the summer of 2000. At present, the master's programme is a so called prestige master at Utrecht University, and it aims at train ing motivated students to become sophisticated researchers in theoretical physics. The programme is built on the philosophy that modern theoretical physics is guided by universal principles that can be applied to any sub?eld of physics. As a result, the basis of the master's programme consists of the obligatory courses Statistical Field Theory and Quantum Field Theory. These focus in particular on the general concepts of quantum ?eld theory, rather than on the wide variety of possible applica tions. These applications are left to optional courses that build upon the ?rm concep tual basis given in the obligatory courses. The subjects of these optional courses in clude, for instance, Strongly Correlated Electrons, Spintronics, Bose Einstein Con densation, The Standard Model, Cosmology, and String Theory.
The book is an up-to-date, concise presentation of the development of submillimeter-wave and far-infrared astrophysics. The topics range from the large-scale atomic and molecular distribution in the Galaxy and in external galaxies to the frontal properties of molecular clouds and the details of the star-formation process. A chapter on the most recent technical advances in the field illustrates the intimate connection and interplay between scientific advancement and technological capability. The book not only summarizes the advances in the field but also presents important background information, addressing experts and graduate students alike.
"New physics" is an appealing new keyword, not yet devalued by the ravages of inflation. But what has this to do with such an ugly field as plasma physics, steeped in classical physics, mostly outworn, with all its unsolved and ambiguous technological problems and its messy and open ended numerical studies? "New physics" is concerned with quarks, Higgs particles, grand unified theory, super strings, gravitational waves, and the profound basics of cosmology and black holes. It is the field of astonishing quantum effects, demonstrated by the von Klitzing effect and high temperature superconductors. But what can plasma physicists offer, after so many years of expensive and frustrating research to solve the problem of fusion energy? One may suggest that the fascinating research ofchaos with applications to plasma, or the achievements of statistical mechanics applied to plasmas, has something to offer and should be the subject of attention. However, this is not the aim of this book. Complementing the traditional aim of physics, which is to interpret the phenomena of nature by generalizing laws such that exact predictions about new properties and effects can be drawn, this book demonstrates how new physics has been derived over the last 30 years from the state of matter which exists at high temperatures (plasma).
THE EURATOM WORKING GROUP ON REACTOR DOSIMETRY AND THE ASTM-EURATOM SYMPOSIA The Euratom Working Group on Reactor Dosimetry (EWGRD) started around 1960 with members having been nominated by the governments, from each European la boratory working in reactor physics and technology. The goal was to exchange di rectly experience and know-how in reactor dosimetry and related programmes. A need for normalisation was felt in order to guarantee that: the same nuclear data is used; measurements in different laboratories give the same results (need for in tercalibration experiments and standards); results are expressed such that a com parison with results from other laboratories is possible. In sub-groups, specific arguments were discussed resulting in final recommenda tions. These final recommendations were then discussed in a plenary meeting and accepted as a recommendation for European usage. Several of these recommenda tions were published, e.g. radiation damage dosimetry guidebooks, and a nuclear data guidebook. Also a programme, executed by the BCMN GEEL, for the produc tion and selling of Reference Materials for Neutron Dosimetry is sponsored by the EWGRD. Workshops in the field of radiation damage and on the pressure vessel steels programme in Europe were successfully organised. The group works in close contact with ASTM (American Society for Testing of Mate rials). Altogether seven symposia were jointly organized, and held, alternatively in Europe and USA. The next symposium, the eighth, will be organized by ASTM in 1993 in the USA.
Andre Roehm investigates the dynamic properties of two-state lasing quantum dot lasers, with a focus on ground state quenching. With a novel semi-analytical approach, different quenching mechanisms are discussed in an unified framework and verified with numerical simulations. The known results and experimental findings are reproduced and parameter dependencies are systematically studied. Additionally, the turn-on dynamics and modulation response curves of two-state lasing devices are presented.
This book gathers the proceedings of The Hadron Collider Physics Symposia (HCP) 2005, and reviews the state-of-the-art in the key physics directions of experimental hadron collider research. Topics include QCD physics, precision electroweak physics, c-, b-, and t-quark physics, physics beyond the Standard Model, and heavy ion physics. The present volume serves as a reference for everyone working in the field of accelerator-based high-energy physics.
This book examines the acceleration and storage of polarized proton beams in cyclic accelerators. Basic equations of spin motion are reviewed, the invariant spin field is introduced, and an adiabatic invariant of spin motion is derived. The text presents numerical methods for computing the invariant spin field, and displays the results in numerous illustrations. This book offers a more lucid view of spin dynamics at high energy than has hitherto been available.
1bis text is meant to be a view of the quantum mechanical fonnalism as it develops with the successive introduction of different types oftransfonnations. In particular, it is meant to help the readers with three tasks: acquainting themselves with a general and direct approach to the quantum mechanics of spin one-half and spin-one particles, primarily leptons, photons and massive vector bosons, and to some extent quarks; finding out what some of the related areas of current research interest are; and, last and foremost, trying to understand the subject, beginning with and stressing the principles involved. The exposition is based on finite-dimensional representations of the homogeneous Lorentz group, and the subsequent introduction of gauge transformations, of the Abelian and non Abelian varieties. Reference to classical mechanics is avoided. Acting on the simple basis spinors and vectors, Lorentz transfonnations generate wave and field functions. Equations are obtained by the relativistic generalization of the addition of angular momenta, the wave or field functions being the solutions. For zero mass the equations may be obtained as the limits of the equations for the massive cases or by the application of the Euclidian group in two dimensions. The latter approach is illuminating in that it uncovers a loss in generality resulting from the former. Identifying momenta as eigenvalues of translations demonstrates covariance under the inhomogeneous Lorentz or Poincare group. Various representations of wave and field functions are given.
The Second International Conference on Nuclidic Masses was held in Vienna, Austria, July 15-19, 1963, using facilities of the International Atomic Energy Agency. This was the third conference in the general area of nuclidic masses in recent years. The first, a symposium held at the Max Planck Institut fur Chemie in 1956, was international in character but not in name. The First International Conference on Nuclidic Masses was held at McMaster University in September of 1960 in conjunction with and shortly after the meeting of the General Assembly of the International Union of Pure and Applied Physics and the Kingston Conference on Nuclear Structure. The Second International Conference on Nuclidic Masses was held under the sponsorship of the International Union of Pure and Applied Physics and the Nuclear Science Committee of the National Academy of Sciences-National Research Council of the United States. Financial support for the conference came from the United Nations Educational, Scientific, and Cultural Organization. The conference committee was made up of the following individuals: Chairman: J. H. E. MATTAUCH General Secretary: H. E. DUCKWORTH Local Secretary: F. P. VIEHBOCK w. W. BUECHNER B. GROSS E. R. COHEN M. J. HIGATSBERGER A. DE SHALIT A. O. C. NIER J. W. M. DuMoND H. H. STAUB B. S. DZHELEPOV D. M. VAN PATTER A. H.
Cosmogenic radionuclides are radioactive isotopes which are produced by natural processes and distributed within the Earth system. With a holistic view of the environment the authors show in this book how cosmogenic radionuclides can be used to trace and to reconstruct the history of a large variety of processes. They discuss the way in which cosmogenic radionuclides can assist in the quantification of complex processes in the present-day environment. The book aims to demonstrate to the reader the strength of analytic tools based on cosmogenic radionuclides, their contribution to almost any field of modern science, and how these tools may assist in the solution of many present and future problems that we face here on Earth. The book provides a comprehensive discussion of the basic principles behind the applications of cosmogenic (and other) radionuclides as environmental tracers and dating tools. The second section of the book discusses in some detail the production of radionuclides by cosmic radiation, their transport and distribution in the atmosphere and the hydrosphere, their storage in natural archives, and how they are measured. The third section of the book presents a number of examples selected to illustrate typical tracer and dating applications in a number of different spheres (atmosphere, hydrosphere, geosphere, biosphere, solar physics and astronomy). At the same time the authors have outlined the limitations of the use of cosmogenic radionuclides. Written on a level understandable by graduate students without specialist skills in physics or mathematics, the book addresses a wide audience, ranging from archaeology, biophysics, and geophysics, to atmospheric physics, hydrology, astrophysics and space science.
Ion implantation offers one of the best examples of a topic that starting from the basic research level has reached the high technology level within the framework of microelectronics. As the major or the unique procedure to selectively dope semiconductor materials for device fabrication, ion implantation takes advantage of the tremendous development of microelectronics and it evolves in a multidisciplinary frame. Physicists, chemists, materials sci entists, processing, device production, device design and ion beam engineers are all involved in this subject. The present monography deals with several aspects of ion implantation. The first chapter covers basic information on the physics of devices together with a brief description of the main trends in the field. The second chapter is devoted to ion im planters, including also high energy apparatus and a description of wafer charging and contaminants. Yield is a quite relevant is sue in the industrial surrounding and must be also discussed in the academic ambient. The slowing down of ions is treated in the third chapter both analytically and by numerical simulation meth ods. Channeling implants are described in some details in view of their relevance at the zero degree implants and of the available industrial parallel beam systems. Damage and its annealing are the key processes in ion implantation. Chapter four and five are dedicated to this extremely important subject.
While electromagnetic interactions were first used to probe the structure of elementary particles more than 20 years ago, their importance has only become fully evident in the last 10 years. In the resonance region, photo production experiments have provided clear evidence for simple quark model ideas, and confirmed the Melosh-transformed SU(6)w as a relevant symmetry classification. At higher energies, their most striking feature is their similarity to hadron-induced reactions, and they have provided fresh insight into the ideas developed to explain strong-interaction physics. New dimensions are added by taking the photon off mass shell, both in the spacelike region, where the development of high-energy electron and muon beams has led to the discovery and study of scaling and the intro duction of "partons," and even more dramatically in the timelike region, where the development of high-energy electron-positron storage rings has led to the exciting discoveries of the last four years. In view of the immense interest stimulated by these developments, an extensive review of our present state of knowledge is both timely and useful. Because of the very wide range of the subject, a cooperative venture presents itself as the most suitable format and is the one we have adopted here. The emphasis throughout is primarily, but not entirely, on phenomenology, concentrating on describing the main features of the experimental data and on the theoretical ideas used directly in their inter pretation." |
You may like...
Bridging Algebra, Geometry, and Topology
Denis Ibadula, Willem Veys
Hardcover
Kinetics of Metallurgical Processes
Hem Shanker Ray, Saradindukumar Ray
Hardcover
R2,733
Discovery Miles 27 330
|