![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Atomic & molecular physics
This study of Australian business institutions and practices places
the rise of big business in Australia in a comparative context
through a study of its 100 largest firms in the first six and a
half decades of the 20th century.
This textbook accommodates the two divergent developmental paths which have become solidly established in the field of fusion energy: the process of sequential tokamak development toward a prototype and the need for a more fundamental and integrative research approach before costly design choices are made.Emphasis is placed on the development of physically coherent and mathematically clear characterizations of the scientific and technological foundations of fusion energy which are specifically suitable for a first course on the subject. Of interest, therefore, are selected aspects of nuclear physics, electromagnetics, plasma physics, reaction dynamics, materials science, and engineering systems, all brought together to form an integrated perspective on nuclear fusion and its practical utilization.The book identifies several distinct themes. The first is concerned with preliminary and introductory topics which relate to the basic and relevant physical processes associated with nuclear fusion. Then, the authors undertake an analysis of magnetically confined, inertially confined, and low-temperature fusion energy concepts. Subsequently, they introduce the important blanket domains surrounding the fusion core and discuss synergetic fusion-fission systems. Finally, they consider selected conceptual and technological subjects germane to the continuing development of fusion energy systems.
An understanding of the collisions between micro particles is of
great importance for the number of fields belonging to physics,
chemistry, astrophysics, biophysics etc. The present book, a theory
for electron-atom and molecule collisions is developed using
non-relativistic quantum mechanics in a systematic and lucid
manner.
This book provides a detailed presentation of modern quantum theories for treating the reaction dynamics of small molecular systems. Its main focus is on the recent development of successful quantum dynamics theories and computational methods for studying the molecular reactive scattering process, with specific applications given in detail for a number of benchmark chemical reaction systems in the gas phase and the gas surface. In contrast to traditional books on collision in physics focusing on abstract theory for nonreactive scattering, this book deals with both the development and the application of the modern reactive or rearrangement scattering theory, and is written in a fashion in which the development of the reactive scattering theory is closely coupled with its computational aspects for practical applications for realistic molecular reactions. The volume includes such topics as methods for calculating rovibrational states of molecules, fundamental quantum theory for scattering (nonreactive and reactive), modern time-independent computational methods for reactive scattering, general time-dependent wave packet methods for reactive scattering, dynamics theory of chemical reactions, dynamics of molecular fragmentation, semiclassical description of quantum mechanics, and also some useful appendices.The book is intended for the reader to not only understand the molecular reaction dynamics from the fundamental scattering theory, but also utilize the provided computational methodologies in their practical applications. It should benefit graduate students and researchers in the field of chemical physics.
Multi-Quark Systems in Hadronic Physics; Bakker, Narodetskii. The Third Generation of Nuclear Physics with the Microscopic Cluster Model; Larganke. The Fermion Dynamical Symmetry Model; Wu, et al. Index.
This is the second volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 2 introduces lasers and quantum optics, while the main focus is on the structure of molecules and their spectroscopy, as well as on collision physics as the continuum counterpart to bound molecular states. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.
The book bridges the gap between a course on modern physics and an advanced formal treatise on nuclear physics. The treatment of topics is simple and direct. Physical ideas are given prominence and this has been done by informal discussions and many analogies. It starts with the tools of nuclear physics, both experimental and mathematical. The author has taken special care in treating the nuclear shell model throughout the analogy with atomic and molecular physics. It is a suitable text for any student who has been exposed to a college level course in modern physics and who has mathematical competence at the level of calculus and elementary vector analysis. An important feature of the book is that numerous illustrative examples have been given along with 200 neatly drawn figures and problem question sets.
Topics covered in this text include: structural aspects of polymers; molecular mobility in amorphous solid polymers; non-elastic deformation of solid amorphous polymers; mechanical experiments; interpretation of results; physical ageing of amorphous polymers; and glass transition.
This historical survey of the discovery of the electron has been published to coincide with the centenary of the discovery. The text maps the life and achievements of J.J. Thomson, with particular focus on his ideas and experiments leading to the discovery. It describes Thomson's early years and education. It then considers his career at Cambridge, first as a fellow of Trinity, later as the head of the Cavendish Laboratory and finally as Master of Trinity and national spokesman for science. The core of the book is concerned with the work undertaken at the Cavendish, culminating in the discovery of "corpuscles," later named "electrons."; In the final two chapters, the immediate aftermath and implications of the work are described. These include the creation of the subject of atomic physics as well as the broader long term developments which can be traced from vacuum valves and the transistor through to the microelectronics revolution.
Using the quantum approach to the subject of atomic physics, this text keeps the mathematics to the minimum needed for a clear and comprehensive understanding of the material. Beginning with an introduction and treatment of atomic structure, the book goes on to deal with quantum mechanics, atomic spectra and the theory of interaction between atoms and radiation. Continuing to more complex atoms and atomic structure in general, the book concludes with a treatment of quantum optics. Appendices deal with Rutherford scattering, calculation of spin-orbit energy, derivation of the Einstein B coefficient, the Pauli Exclusion Principle and the derivation of eigenstates in helium. The book should be of interest to undergraduate physics students at intermediate and advanced level and also to those on materials science and chemistry courses.
This book is intended for scientists engaged in the measurement of weak alpha, beta, and gamma active samples; in health physics, environmental control, nuclear geophysics, tracer work, radiocarbon dating etc. It describes the underlying principles of radiation measurement and the detectors used. It also covers the sources of background, analyzes their effect on the detector and discusses economic ways to reduce the background. The most important types of low-level counting systems and the measurement of some of the more important radioisotopes are described here. In cases where more than one type can be used, the selection of the most suitable system is shown.
Computational Atomic Structure: An MCHF Approach deals with the field of computational atomic structure, specifically with the multiconfiguration Hartree-Fock (MCHF) approach and the manner in which this approach is used in modern physics. Beginning with an introduction to computational algorithms and procedures for atomic physics, the book describes the theory underlying nonrelativistic atomic structure calculations (making use of Brett-Pauli corrections for relativistic effects) and details how the MCHF atomic structure software package can be used to this end. The book concludes with a treatment of atomic properties, such as energy levels, electron affinities, transition probabilities, specific mass shift, fine structure, hyperfine-structure, and autoionization. This modern, reliable exposition of atomic structure theory proves invaluable to anyone looking to make use of the authors' MCHF atomic structure software package, which is available publicly via the Internet.
The electron is fundamental to almost all aspects of modern life, controlling the behavior of atoms and how they bind together to form gases, liquids, and solids. Flash of the Cathode Rays: A History of J.J. Thomson's Electron presents the compelling story of the discovery of the electron and its role as the first subatomic particle in nature. The book traces the evolution of the concept of electrical charge, from the earliest glow discharge studies to the final cathode ray and oil drop experiments of J.J. Thomson and Robert Millikan. It also provides an overview of the history of modern physics up to the advent of the old quantum theory around 1920. Consolidating scholarly material while incorporating new material discovered by the well-respected author, the book covers the continental and English race for the source of the cathode rays, culminating in Thomson's corpuscle in 1897. It explores the events leading to Millikan's unambiguous isolation of the electron and the simultaneous circumstances surrounding the birth of Ernest Rutherford's nuclear atom and the discovery of radioactivity in 1896. The author also focuses on the controversies over N-rays, Becquerel's positive electron, and the famous Ehrenhaft-Millikan dispute over subelectrons. Scholarly yet accessible to those with basic physics knowledge, this book should be of interest to historians of science, professional scientists and engineers, teachers and students of physics, and general readers interested in the development of modern physics.
A Perspective of Resonant Tunneling; L.L. Chang. Materials and Band-Structure Effects: Epitaxial Growth of Atomically Smooth GaAs/AlxGa1xAs Interfaces for Resonant Tunneling; K. Ploog. MBE Growth of High Performance GaAs/GaAlAs and InGaAs/GaAlAs Double Barrier Quantum Well Structures for Resonant Tunneling Devices; H. Riechert, et al. Tunneling in Polytype InAs-AlSb-GaSb Heterostructures; K.F. Longenbach, et al. Scattering and Dynamic Effects: Scattering processes, Coherent and Incoherent Transport in Resonant Tunneling Structures; B. Vinter, et al. Quantum Coherence and Phase Randomization in Series Resistors; M. Buttiker. Charge Buildup, Intrinsic Bistability and Energy Relaxation in Resoant Tunneling Structures: High Pressure and Magnetic Field Studies; L. Eaves, et al. Multiple-Barrier and Low-Dimensional Systems: Miniband Transport and Resonant Tunneling in Superlattices; J.F. Palmier. Transport in Superlattices: Observation of Negative Differential Conductance by Field Induced Localization and Its Equivalence with the Esaki-Tsu Mechanism: Scattering Controlled Resonances in Superlattices; F. Capasso, et al. Device Structures: High-Frequency Oscillators Based on Resonant Tunneling; T.C.L.G> Sollner, et al. 39 additional articles. Index.
Integrating molecular physics and information theory, this work presents molecular electronics as a method for information storage and retrieval that incorporates nanometer-scaled systems, uses microscopic particles and exploits the laws of quantum mechanics. It furnishes application examples employing properties of distinct molecules joined together to a macroscopic ensemble of virtually identical units.
Acknowledged as the "founding father" of and world renowned expert on electron cyclotron resonance sources Richard Geller has produced a unique book devoted to the physics and technicalities of electron cyclotron resonance sources. Electron Cyclotron Resonance Ion Sources and ECR Plasmas provides a primer on electron cyclotron phenomena in ion sources as well as being a reference to the field of ion source developments. Coverage includes elements of plasma physics, specific electron cyclotron resonance physics, and the relevant technology directed at both scientists and engineers.
The book gives a comprehensive introduction to nano-optics The book is of interest to physicists, biologists and chemists The book may suggest directions to doctoral thesis investigations This volume presents a considerable number of interrelated contributions dealing with the new scientific ability to shape and control matter and electromagnetic fields on a sub-wavelength scale. The topics range from the fundamental ones, such as photonic metamateriials, plasmonics and sub-wavelength resolution to the more applicative, such as detection of single molecules, tomography on a micro-chip, fluorescence spectroscopy of biological systems, coherent control of biomolecules, biosensing of single proteins, terahertz spectroscopy of nanoparticles, rare earth ion-doped nanoparticles, random lasing, and nanocoax array architecture. The various subjects bridge over the disciplines of physics, biology and chemistry, making this volume of interest to people working in these fields. The emphasis is on the principles behind each technique and on examining the full potential of each technique. The contributions that appear in this volume were presented at a NATO Advanced Study Institute that was held in Erice, Italy, 3-18 July, 2011. The pedagogical aspect of the Institute is reflected in the topics presented in this volume.
Introduction to Gauge Field Theory provides comprehensive coverage of modern relativistic quantum field theory, emphasizing the details of actual calculations rather than the phenomenology of the applications. Forming a foundation in the subject, the book assumes knowledge of relativistic quantum mechanics, but not of quantum field theory. The book is ideal for graduate students, advanced undergraduates, and researchers in the field of particle physics.
This important book presents on approach to understanding the atomic nucleus that exploits simple algebraic techniques. The book focuses primarily on a panicular algebraic model, the Interacting Boson Model (IBM); ft outlines the algebraic structure, or group theoretical basis, of the IBM and other algebraic models using simple examples. Both the compa6son of the IBM with empirical data and its microscopic basis are explored, as are extensions to odd mass nuclei and to phenomena not originally encompassed within its purview. An important final chapter treats fermion algebraic approaches to nuclear structure which can be both more microscopic and more general, and which represent Promising avenues for future research. Each of the contributors to this work is a leading expert in the field of algebraic models; together they have formulated an introduction to the subject which will be an important resource for the series graduate student and the professional physicist alike.
This volume contains the proceedings of a NATO Advanced Study Institute which was held in Alghero, Sardinia, in July 1991. The development of computers in the recent years has lead to the emergence of unconventional ideas aiming at solving old problems. Among these, the possibility of computing directly fluid flows from the trajectories of constituent particles has been much exploited in the last few years: lattice gases cellular automata and more generally Molecular Dynamics have been used to reproduce and study complex flows. Whether or not these methods may someday compete with more traditional approaches is a question which cannot be answered at the present time: it will depend on the new computer architectures as well as on the possibility to develop very simple models to reproduce the most complex phenomena taking place in the approach of fully developed turbulence or plastic flows. In any event, these molecular methods are already used, and sometimes in an applied engineering context, to study strong shock waves, chemistry induced shocks or motion of dislocations in plastic flows, that is in domains where a fully continuum description appears insufficient. The main topic of our Institute was the molecular simulations of fluid flows. The project to hold this Institute was made three years ago, in the summer of 1989 during a NATO workshop in Brussels on the same subject.
Intermetallic compounds are in the focus of solid-state research for a wide range of future applications, e.g. in heterogeneous catalysis, for thermoelectric generators, and basic research of quantum critical effects. A comprehensive overview is given on various crystal growth techniques that are particularly adopted to intermetallic phases. Experienced authors from leading institutes give detailed descriptions of the specific problems in crystal growth of intermetallic compounds and approaches to solve them.
This book features information regarding the Chernobyl nuclear accident, the production of elementary particles, radiation exposure, the geopolitical effects of the end of the nuclear arms race between the U.S. and the former Soviet Union, and the future of nuclear power.
This book presents a comprehensive theoretical basis of symmetry representations of molecular vibrations, matrix representation of symmetries, and the elements of group theory that are relevant to other symmetry elements/operations, crystallographic and molecular point groups. The book helps understand the reducible and irreducible representations of symmetry matrices and then derive the normal modes of vibration of different molecules by using suitable techniques independently. Targeted to graduate students and researchers, this book aims not only to derive the normal modes of vibration of any given molecule themselves but also compares and verifies them with the experimentally found modes by using IR and Raman-related techniques. For the first time in the crystallographic history, this book presents the group multiplication tables of all 32 point groups in both international and Schoenflies notations.
Introduction to Gauge Field Theory provides comprehensive coverage
of modern relativistic quantum field theory, emphasizing the
details of actual calculations rather than the phenomenology of the
applications.
Unique in scope and treatment, Theory of Atomic Nuclei, Quasi-particle and Phonons gives a microscopic description of the structure of complex nuclei at low and intermediate excitation energies in terms of quasi-particle and phonon operators. A substantial quantity of modern experimental data is collected together and incorporated into the book to complement the theoretical treatment. This source book is an extremely useful research reference of the results of experimental work in the area. |
You may like...
The Physics of Inertial Fusion…
Stefano Atzeni, Jurgen Meyer-Ter-Vehn
Hardcover
R10,145
Discovery Miles 101 450
Exploring Quantum Mechanics - A…
Victor Galitski, Boris Karnakov, …
Hardcover
R6,101
Discovery Miles 61 010
The Electrostatic Accelerator - A…
Ragnar Hellborg, Harry J. Whitlow
Paperback
R754
Discovery Miles 7 540
Advances in Quantum Chemistry, Volume 86
Erkki J. Brandas, Rodney J. Bartlett
Hardcover
R5,223
Discovery Miles 52 230
|