![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Atomic & molecular physics
This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative setting. This book covers some of the most important works in this area reviewing the proposal for Mott transitions and Luttinger liquid physics with light, to simulating interacting relativistic theories, topological insulators and gauge field physics. The stage of the field now is at a point where on top of the numerous theory proposals; experiments are also reported. Connecting to the theory proposals presented in the chapters, the main experimental quantum technology platforms developed from groups worldwide to realize photonic and polaritonic simulators in the laboratory are also discussed. These include coupled microwave resonator arrays in superconducting circuits, semiconductor based polariton systems, and integrated quantum photonic chips. This is the first book dedicated to photonic approaches to quantum simulation, reviewing the fundamentals for the researcher new to the field, and providing a complete reference for the graduate student starting or already undergoing PhD studies in this area.
This work reports on the generation of artificial magnetic fields with ultracold atoms in optical lattices using laser-assisted tunneling, as well as on the first Chern-number measurement in a non-electronic system. It starts with an introduction to the Hofstadter model, which describes the dynamics of charged particles on a square lattice subjected to strong magnetic fields. This model exhibits energy bands with non-zero topological invariants called Chern numbers, a property that is at the origin of the quantum Hall effect. The main part of the work discusses the realization of analog systems with ultracold neutral atoms using laser-assisted-tunneling techniques both from a theoretical and experimental point of view. Staggered, homogeneous and spin-dependent flux distributions are generated and characterized using two-dimensional optical super-lattice potentials. Additionally their topological properties are studied via the observation of bulk topological currents. The experimental techniques presented here offer a unique setting for studying topologically non-trivial systems with ultracold atoms.
In the50years since the first volume of "Progress in Optics" was
published, optics has become one of the most dynamic fields of
science. The volumes in this series that have appeared up to now
contain more than 300 review articles by distinguished research
workers, which have become permanent records for many important
developments, helping optical scientists and optical engineers stay
abreast of their fields.
The eleventhAdvancedS tudyInstitute(ASI) on Techniquesand Con- ceptsof High Energy Physics marks thetransitionfrom anextraordinary centuryof scienceto one thatwill surely bring wonderswe can scarcely imagine.It also marks a transitionfrom its founder,theinimitableTom Ferbel,to its newdirectors . We are honoredto have beenasked to con- tinue the venerabletraditionthat Tom established. The school is his distinctivecreation , and will always bearhis mark. The 2000 meetingwas held at the Hotel on the Cay in St. Croix. It is an ideal location: sufficientlysecluded to inspire a vigorous but informal intellectualatmosphere,yet closeenough to the main island to afford opportunitiesto mingle with the locals and partakeof their hospitality.Altogether 76 physicistsboth young, and not so young, par- ticipatedfrom 18 count r ies . Forthe first time, this meetingattract ed a substantialnumber of studentsfrom EasternEurope, all of whom were warmly welcomed.The bulk of thefinancialsupportfor themeetingwas providedby the ScientificAffairs Division of the North Atlantic Treaty Organization(NATO). The ASI was co-sponsoredby the U .S. Depart- ment of Energy (DOE) , by the Fermi National Ac celeratorLaboratory (Fermilab), by the U.S . NationalS cien ceFoundation(NSF ), the Univer- sity of Rochester , Florida State University (FSU) and the Institutefor Theoreticaland ExperimentalPhysics (ITEP , Moscow). As is the tradition , the scientificprogramwas designedfor advanced graduatestudentsand recentPhD recipientsin experimentalparticle physics. The present volume covers topics that updateand comple- ment those published (by Plenum and Kluw er) for the first ten ASIs. The materi al in this volume shou ld be of interest to a wide audience of physicists.
Interferometry, the most precise measurement technique known today, exploits the wave-like nature of the atoms or photons in the interferometer. As expected from the laws of quantum mechanics, the granular, particle-like features of the individually independent atoms or photons are responsible for the precision limit, the shot noise limit. However this "classical" bound is not fundamental and it is the aim of quantum metrology to overcome it by employing entanglement among the particles. This work reports on the realization of spin-squeezed states suitable for atom interferometry. Spin squeezing was generated on the basis of motional and spin degrees of freedom, whereby the latter allowed the implementation of a full interferometer with quantum-enhanced precision.
This book shows that the strong interaction forces, which keep hadrons and nuclei together, are relativistic gravitational forces exerted between very small particles in the mass range of neutrinos. First, this book considers the motion of two or three charged particles under the influence of electrostatic and gravitational forces only, which shows that bound states are formed by following the same semi-classical methodology used by Bohr to describe the H atom. This approach is also coupled with Newton's gravitational law and with Einstein's special relativity. The results agree with experiments on the masses, binding energies, radii, angular moments and magnetic moments of hadrons. The model provides the means to rationalize all the main experimental features of the strong force. Some of the implications for the unification of forces and the nature of our micro-cosmos and macro-cosmos are also discussed. The creation of mass itself, in other words, of hadrons from particles as light as neutrinos, can now be modeled in a straightforward manner.
Energy Dissipation in Molecular Systems analyzes experimental data on the redistribution and dissipation of energy injected into molecular systems by radiation or charged particles. These processes, competing with such practically important relaxation channels as chemical reaction or stimulated emission (laser action), are the primary focus in this monograph. Among other topics, the book treats vibrational redistribution and electronic relaxation in isolated molecules and the effects of inter-molecular interactions (collisions, complex formation, solvent effects) on the relaxation paths. Primary photo-chemical processes (such as isomerization, proton or hydrogen-atom transfer, electron transfer and ionization) are also treated as particular cases of vibrational or electronic relaxation. Only a basic knowledge of quantum mechanics and spectroscopy is assumed and calculations are kept to a strict minimum, making the book more accessible to students.
c Societ` a Italiana di Fisica / Springer-Verlag 2008 The 11th Workshop on The Physics of Excited Nucleons, NSTAR 2007, was held at the University of Bonn, Germany,fromSeptember5-8,2007.ItwasthelatestofaseriesofsuccessfulconferencesattheRensselaerPolytechnic Institute (1988), Florida State University (1994 and 2005), Je?erson Lab (1995 and 2000), INT Seattle (1996), GWU ? Washington (1997), ECT Trento (1998), Mainz (2001), Pittsburgh (2002) and the LPSC Grenoble (2004). A Baryon Resonance Analysis Group (BRAG) meeting immediately before the workshop focused especially on the physical meaning of bare and dressed scattering matrix singularities. A focus workshop on? photoproduction rounded o? the NSTAR 2007. The goal of NSTAR 2007 was to bring together experts on all areas of physics relevant to baryon spectroscopy, both in experiment and theory. Latest results were presented in 30 plenary talks and 34 parallel contributions, the proceedings of which are collected in this volume. The workshop was attended by 123 scientists of 41 universities and laboratories from 16 countries. Exciting new high-precision data were shown from facilities in Asia, the US and Europe, e.g. BES, BNL, COSY, ELSA, GRAAL, JLab, MAMI and LEPS. Large-acceptance detectors provide complete angular distributions in many reaction channels. Particular emphasis is put on the measurement of single and double polarisation observables such that many new polarization measurements can be expected in forthcoming meetings.
Research in the biological as well as the physical sciences is again raising questions about the responsible uses of science, much as half a century ago, when the detonation of nuclear weapons led many scientists to consider the uses to which their discoveries were put. Otto Hahn (1879-1968) was awarded the 1944 Nobel Prize for Chemistry for his work on atomic fission: His experiments with Lise Meitner and Fritz Strassmann in Berlin in the 1930s and 1940s led to the discovery that uranium nuclei can undergo spontaneous fission, releasing enormous energies. The results, conveyed to England and the US by scientific refugees from Nazi Germany, instigated the Manhattan Project and the development of the Atomic Bomb. Reviled by many after the war as one of the people responsible for the carnage at Hiroshima and Nagasaki, Hahn had already begun to reflect on the political and social responsibility of scientists for their fundamental discoveries and the subsequent applications of the knowledge they create. Already during the war, Hahn had protested Nazi restrictions on universities and researchers, and after the War he became actively involved in efforts to restrict the spread of nuclear weapons. In this volume Klaus Hoffmann discusses Hahn's contributions to science and his reflections on scientific and social responsibility. He concludes that Hahn's ideas can still serve as a foundation for responsible and moral actions by scientists.
The study of atomic physics propelled us into the quantum age in the early twentieth century and carried us into the twenty-first century with a wealth of new and, in some cases, unexplained phenomena. Topics in Atomic Physics provides a foundation for students to begin research in modern atomic physics. It can also serve as a reference because it contains material that is not easily located in other sources. A distinguishing feature is the thorough exposition of the quantum mechanical hydrogen atom using both the traditional formulation and an alternative treatment not usually found in textbooks. The alternative treatment exploits the preeminent nature of the pure Coulomb potential and places the Lenz vector operator on an equal footing with other operators corresponding to classically conserved quantities. A number of difficult to find proofs and derivations are included as is development of operator formalism that permits facile solution of the Stark effect in hydrogen. Discussion of the classical hydrogen atom is also presented. Using the correspondence principle this provides a transition from classical to quantum concepts. It is also adapted to describing certain characteristics of multi-electron atoms. The book is intended for graduate students who have had introductory quantum mechanics, but undergraduates who have had such a course can also benefit from it. There are more than eighty problems at the ends of chapters with all answers given. A detailed solutions manual, in some cases giving more than one solution, is available to instructors. Charles E. Burkhardt earned his Ph.D. in experimental atomic physics at Washington University in St.Louis in 1985. He is Professor of Physics at Florissant Valley Community College in St. Louis. Jacob J. Leventhal earned his Ph.D. in experimental atomic physics at the University of Florida in 1965. He is Curators' Professor at the University of Missouri a" St. Louis. They have collaborated on experimental atomic physics since 1980, publishing numerous papers in research and teaching journals.
This book mainly focuses on the study of photon + 3 jets final state in Proton-Proton Collisions at s = 7TeV, searching for patterns of two (or more) distinct hard scatterings in the same collision, i.e the so-called Double Parton Scattering (DPS). A new method by using Monte Carlo generators was performed and provides higher order corrections to the description of the Single Parton Scattering (SPS) background. Further it is investigated whether additional contributions from DPS can improve the agreement between the measured data and the Monte Carlo predictions. The current theoretical uncertainties related to the SPS background are found to be larger than expectation. At the same time a rich set of DPS-sensitive measurements is reported for possible further interpretation.
By providing the reader with a foundational background in high spin nuclear structure physics and exploring exciting current discoveries in the field, this book presents new phenomena in a clear and compelling way. The quest for achieving the highest spin states has resulted in some remarkable successes which this monograph will address in comprehensive detail. The text covers an array of pertinent subject matter, including the rotational alignment and bandcrossings, magnetic rotation, triaxial strong deformation and wobbling motion and chirality in nuclei. This book offers a clearly-written and up-to-date treatment of the topics covered. The prerequisites for a proper appreciation are courses in nuclear physics and nuclear models and measurement techniques of observables like gamma-ray energies, intensities, multi-fold coincidences, angular correlations or distributions, linear polarization, internal conversion coefficients, short lifetime (pico-second range) of excited states etc. and instrumentation and data analysis methods.
In this introductory chemical physics textbook, the authors discuss the interactions, bonding, electron density, and experimental techniques of free molecules, and apply spectroscopic methods to determine molecular parameters, dynamics, and chemical reactions.
This book deals with the reflection of electromagnetic and particle waves by interfaces. The interfaces can be sharp or diffuse. The topics of the book contain absorption, inverse problems, anisotropy, pulses and finite beams, rough surfaces, matrix methods, numerical methods, reflection of particle waves and neutron reflection. Exact general results are presented, followed by long wave reflection, variational theory, reflection amplitude equations of the Riccati type, and reflection of short waves. The Second Edition of the Theory of Reflection is an updated and much enlarged revision of the 1987 monograph. There are new chapters on periodically stratified media, ellipsometry, chiral media, neutron reflection and reflection of acoustic waves. The chapter on anisotropy is much extended, with a complete treatment of the reflection and transmission properties of arbitrarily oriented uniaxial crystals. The book gives a systematic and unified treatment reflection and transmission of electromagnetic and particle waves at interfaces. It is intended for physicists, chemists, applied mathematicians and engineers, and is written in a simple direct style, with all necessary mathematics explained in the text.
It is a great pleasure that we are now publishing the fourth volume of the series on PUILS, through which we have been introducing the progress in ultrafast intense laser science, the frontiers of which are rapidly expanding, thanks to the progress in ultrashort and high-power laser technologies. The interdisciplinary nature of this research ?eld is attracting researchers with di?erent expertise and backgrounds. As in the previousvolumeson PUILS, each chapter in the presentvolume, which is in the range of 15-25 pages, begins with an introduction in which a clear and concise account of the signi?cance of the topic is given, followed by a description of the authors' most recent research results. All the chapters are peer-reviewed. The articles of this fourth volume cover a diverse range of the interdisciplinary research ?eld, and the topics may be grouped into four categories: strong ?eld ionization of atoms (Chaps. 1-2), excitation, ioni- tion and fragmentation of molecules (Chaps. 3-5), nonlinear intense optical phenomena and attosecond pulses (Chaps. 6-8), and laser solid interactions and photoemissions (Chaps. 9-11).
detectors, whiletheUA1collaborationwasthe prototype ofthenowwellaccepted very large international scienti?c collaborations. Towards the end of this meeting, we shall look forward to the future programme of CERN. We are able to do so with the con?dence engendered by our discoveries of long ago. LucianoMaiani (CERNDirectorGeneral) CERNpressrelease 1 Communique depresseduCERN 2 Welcome L. Maiani 5 ThemakingoftheStandardModel S. Weinberg 9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 CERN scontributiontoacceleratorsandbeams G. Brianti 25 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2 Magnetic horn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 PS Booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 ISR, ?rst proton--proton collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5 SPS collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6 LEPandLHC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Thediscoveryofneutralcurrents D. Haidt 41 1 Prolog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2 The double challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3 Euphoria in March 1973. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 The proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5 Attack and ?nal victory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6 Epilog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Thediscoveryofthe &, apersonalrecollection P. Darriulat 55 1 Preamble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2 An announced discovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 X Contents 3 The proton--antiproton choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 Physics in the limelight and physics in the shade. . . . . . . . . . . . . . . . . . . . . . 59 5 The UA1/UA2 competition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 & physicsatLEP P. Zerwas 73 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2 -Boson physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 2. 1 The electroweak basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 2. 2 Top-quark prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 2. 3 Quantum chromodynamics QCD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 2. 4 Three families in the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2. 5 Gauge coupling uni?cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3 -Boson physics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4 Higgs mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4. 1 Virtual Higgs mass estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4. 2 Real Higgs mass bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 PhysicsattheLHC J. Ellis 89 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 2 The quest for the Higgs boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ."
Advanced spectroscopic techniques allow the probing of very small systems and very fast phenomena, conditions that can be considered "extreme" at the present status of our experimentation and knowledge. Quantum dots, nanocrystals and single molecules are examples of the former and events on the femtosecond scale examples of the latter. The purpose of this book is to examine the realm of phenomena of such extreme type and the techniques that permit their investigations. Each author has developed a coherent section of the program starting at a somewhat fundamental level and ultimately reaching the frontier of knowledge in the field in a systematic and didactic fashion. The formal lectures are complemented by additional seminars.
The interaction of electron beams with solid targets has been studied since the early part of the last century. Present interest is spurred on by the fundamental role played by the electron-solid interaction in - among other areas - scanning electron microscopy, electron-probe microanalysis and Auger electron spectroscopy. This book aims to investigate selected aspects of the interaction of electrons with matter (backscattering coefficient for bulk targets, absorption, backscattering and transmission for supported and unsupported thin films, implantation profiles, secondary electron emission and so on); to study the probabilistic laws of interaction of the individual electrons with the atoms (elastic and inelastic cross sections); to introduce the Monte Carlo method and its use for computing the macroscopic characteristics of the interaction processes. Each chapter compares theory, simulations and experimental data.
This thesis explores ultracold quantum gases of bosonic and fermionic atoms in optical lattices. The highly controllable experimental setting discussed in this work, has opened the door to new insights into static and dynamical properties of ultracold quantum matter. One of the highlights reported here is the development and application of a novel time-resolved spectroscopy technique for quantum many-body systems. By following the dynamical evolution of a many-body system after a quantum quench, the author shows how the important energy scales of the underlying Hamiltonian can be measured with high precision. This achievement, its application, and many other exciting results make this thesis of interest to a broad audience ranging from quantum optics to condensed matter physics. A lucid style of writing accompanied by a series of excellent figures make the work accessible to readers outside the rapidly growing research field of ultracold atoms.
This book gives a complete account of electron momentum spectroscopy to date. It describes in detail the construction of spectrometers and the acquisition and reduction of cross-section data, explaining the quantum theory of the reaction and giving experimental verification.
This book considers problems of optimization arising in the design of electromagnetic radiators and receivers. The authors develop a systematic general theory that can be applied to a wide class of structures. The theory is illustrated with familiar, simple examples and indications of how the results can be applied to more complicated structures. The final chapter introduces techniques from multicriteria optimization in antenna design. The material is intended for a dual audience of mathematicians and mathematically-sophisticated engineers. References to both the mathematics and engineering literature help guide the reader through the necessary mathematical background.
This is the first book devoted specifically to the problem of light scattering and absorption by inhomogeneous and anisotropic spherical particles. Unlike other books in the field, Electromagnetic Scattering in Disperse Media pays considerable attention to various aspects of light absorption inside particles, including internal field distributions, MDR resonances, and absorption in restricted regions inside particles. It contains many results (and more than 100 figures) computed for polydisperse particle systems and algorithms and provides the possibility to use them (web site). Although the main emphasis is given to optical properties of atmospheric aerosol, the book also deals with many other practical applications involving inhomogeneous and anisotropic particles.
This wide-ranging collection of essays presents the best of Panofsky's most accessible writings. It covers his early collaboration with Luis Alvarez and his later work as researcher and director at the Stanford Linear Accelerator Center. Through several essays--some reflecting his lifelong concern with nuclear weapons and arms control--Panofsky also reveals the often intractable differences that exist between the drives of theoretical science and the constraints of public policy. |
![]() ![]() You may like...
Dialogues Concerning Two New Sciences…
Galileo Galilei, Alfonso De Salvio, …
Hardcover
R819
Discovery Miles 8 190
Structurally Constrained Controllers…
Somayeh Sojoudi, Javad Lavaei, …
Hardcover
R2,987
Discovery Miles 29 870
Fault Diagnosis Inverse Problems…
Lidice Camps Echevarria, Orestes Llanes Santiago, …
Hardcover
R3,119
Discovery Miles 31 190
Forty Days to Forgiveness - A…
Ronald D Ramsey Med Dmin Lmft
Hardcover
|