![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Atomic & molecular physics
This book introduces readers to MesoBioNano (MBN) Explorer - a multi-purpose software package designed to model molecular systems at various levels of size and complexity. In addition, it presents a specially designed multi-task toolkit and interface - the MBN Studio - which enables the set-up of input files, controls the simulations, and supports the subsequent visualization and analysis of the results obtained. The book subsequently provides a systematic description of the capabilities of this universal and powerful software package within the framework of computational molecular science, and guides readers through its applications in numerous areas of research in bio- and chemical physics and material science - ranging from the nano- to the mesoscale. MBN Explorer is particularly suited to computing the system's energy, to optimizing molecular structure, and to exploring the various facets of molecular and random walk dynamics. The package allows the use of a broad variety of interatomic potentials and can, e.g., be configured to select any subset of a molecular system as rigid fragments, whenever a significant reduction in the number of dynamical degrees of freedom is required for computational practicalities. MBN Studio enables users to easily construct initial geometries for the molecular, liquid, crystalline, gaseous and hybrid systems that serve as input for the subsequent simulations of their physical and chemical properties using MBN Explorer. Despite its universality, the computational efficiency of MBN Explorer is comparable to that of other, more specialized software packages, making it a viable multi-purpose alternative for the computational modeling of complex molecular systems. A number of detailed case studies presented in the second part of this book demonstrate MBN Explorer's usefulness and efficiency in the fields of atomic clusters and nanoparticles, biomolecular systems, nanostructured materials, composite materials and hybrid systems, crystals, liquids and gases, as well as in providing modeling support for novel and emerging technologies. Last but not least, with the release of the 3rd edition of MBN Explorer in spring 2017, a free trial version will be available from the MBN Research Center website (mbnresearch.com).
Why are candle flames yellow? Why does ultraviolet light supposedly kill vampires? What about the monocle? Why was the monocle-a corrective lens that only corrects vision in a single eye-so popular among businessmen and politicians for so many years? Stephen R. Wilk answers all this and so much more in Sandbows and Black Lights. This book is a collection of original essays on weird and unusual topics surrounding optics. Wilk uses the BBC's formula of "Education by Stealth" to explain unusual facets of science and technology through the matrix of interesting and cultural paths, all the while weaving in math equations in an accessible way. The first part of the book focuses on the history, the second moves to odd scientific approaches to visual phenomena, and the third part explains the unique use of optics in fiction, movies, and comic books over time. Chapters cover everything from endless corridors to the beam of light over treasure chests in movies. Whether he is explaining a rare discovery or answering a seemingly unapproachable question, Wilk is able to lure readers in on every page. He has a unique ability to turn complex science into an engaging story, and this book is full of narratives on esoteric topics anyone will find intriguing. Sandbows and Black Lights provides an enticing and entertaining look at physical illusions in a whole new way.
This book presents a collection of invited research and review contributions on recent advances in (mainly) theoretical condensed matter physics, theoretical chemistry, and theoretical physics. The volume celebrates the 90th birthday of N.H. March (Emeritus Professor, Oxford University, UK), a prominent figure in all of these fields. Given the broad range of interests in the research activity of Professor March, who collaborated with a number of eminent scientists in physics and chemistry, the volume embraces quite diverse topics in physics and chemistry, at various dimensions and energy scales. One thread connecting all these topics is correlation in aggregated states of matter, ranging from nuclear physics to molecules, clusters, disordered condensed phases such as the liquid state, and solid state physics, and the various phase transitions, both structural and electronic, occurring therein. A final chapter leaps to an even larger scale of matter aggregation, namely the universe and gravitation. A further no less important common thread is methodological, with the application of theoretical physics and chemistry, particularly density functional theory and statistical field theory, to both nuclear and condensed matter.
A knowledge of atomic theory should be an essential part of every physicist's and chemist's toolkit. This book provides an introduction to the basic ideas that govern our understanding of microscopic matter, and the essential features of atomic structure and spectra are presented in a direct and easily accessible manner. Semi-classical ideas are reviewed and an introduction to the quantum mechanics of one and two electron systems and their interaction with external electromagnetic fields is featured. Multielectron atoms are also introduced, and the key methods for calculating their properties reviewed.
This thesis proposes a novel way to catch light energy using an ultrasmall nanostructure. The author has developed photon-materials systems to open the way for novel photoexcitation processes based on the findings obtained from in-situ observation of the systems in which localized surface plasmon (LSP) and molecules interact strongly. The highly ordered metal nanostructure provided the opportunity for anisotropic photoexcitation of materials in an eccentric way. The optimization of the systems via nanostructuring and electrochemical potential control resulted in the novel excitation process using LSP to realize the additional transition for photoexcitation. Furthermore, excited electronic states formed the strong coupling between LSP and excitons of molecules. This thesis will provide readers with an idea for achieving very effective processes for photon absorption, scattering, and emission beyond the present limits of photodevices.
State-of-the-art survey by leading experts in the field. Major foci are superheavy nuclei and neutron-rich exotic nuclei. In addition new developments in nuclear fission and nuclear cluster decay are shown. Finally developments in relativistic heavy ion collisions and the physics of supercritical fields are detailed.
This is a comprehensive text for a course on non-relativistic nuclear reactions. The main formalisms used to describe nuclear reactions are explained clearly and coherently, and the reader is led from basic laws to the final formulae used to calculate measurable quantities. Combining a thorough theoretical approach with applications to recent experimental results, this text covers all main topics including potential scattering, formal reaction theory, the theory of the optical model, direct and compound reactions, fusion, deep inelastic collisions, and induced fission. Lecturers, graduate students, and researchers in nuclear and atomic physics will find this a useful textbook and reference work.
Quantum Electronics for Atomic Physics provides a course in quantum electronics for researchers in atomic physics and other related areas such as telecommunications. The book covers the usual topics, such as Gaussian beams, lasers, nonlinear optics and modulation techniques, but also includes a number of areas not usually found in a textbook on quantum electronics. Among the latter are such practical matters as the enhancement of nonlinear processes in a build-up cavity or periodically polled waveguide, impedance matching into a cavity, laser frequency stabilization (including servomechanism theory), astigmatism in ring cavities, and frequency locking a laser to an atomic or molecular line. The second edition includes a new complete chapter on optical waveguide theory, fiber optic components and fiber lasers. Other updates include new coverage of mode locked fiber lasers, comb generation in a micro-resonator, and periodically poled optical waveguides.
The propagation of light in 'dense media' where dipole-dipole interactions play a role is a fundamental topic that was first studied in the work of Clausius, Mossotti, Lorenz and Lorentz in the latter half of the nineteenth century. However, until recently there remained some areas of controversy: for example, whereas the Lorentz model for a gas predicts a resonance shift, a discrete dipole model does not. This thesis makes the first combined measurement of both the Lorentz shift and the associated collective Lamb shift. This clear experimental result stimulated new theoretical work that has significantly advanced our understanding of light propagation in interacting media.
Matter wave interferometry is a promising and successful way to explore truly macroscopic quantum phenomena and probe the validity of quantum theory at the borderline to the classic world. Indeed, we may soon witness quantum superpositions with nano to micrometer-sized objects. Yet, venturing deeper into the macroscopic domain is not only an experimental but also a theoretical endeavour: new interferometers must be conceived, sources of noise and decoherence identified, size effects understood and possible modifications of the theory taken into account. This thesis provides the theoretical background to recent advances in molecule and nanoparticle interferometry. In addition, it contains a physical and objective method to assess the degree of macroscopicity of such experiments, ranking them among other macroscopic quantum superposition phenomena."
This book describes selected problems in contemporary spectroscopy in the context of quantum mechanics and statistical physics. It focuses on elementary radiative processes involving atomic particles (atoms, molecules, ions), which include radiative transitions between discrete atomic states, the photoionization of atoms, photorecombination of electrons and ions, bremsstrahlung, photodissociation of molecules, and photoattachment of electrons to atoms. In addition to these processes, the transport of resonant radiation in atomic gases and propagation of infrared radiation in molecular gases are also considered. The book subsequently addresses applied problems such as optical pumping, cooling of gases via laser resonance radiation, light-induced drift of gas atoms, photoresonant plasma, reflection of radio waves from the ionosphere, and detection of submillimeter radiation using Rydberg atoms. Lastly, topical examples in atmospheric and climate change science are presented, such as lightning channel glowing, emission of the solar photosphere, and the greenhouse phenomenon in the atmospheres of the Earth and Venus. Along with researchers, both graduate and undergraduate students in atomic, molecular and atmospheric physics will find this book a useful and timely guide.
This work focuses on new electromagnetic decay mode in nuclear physics. The first part of the thesis presents the observation of the two-photon decay for a transition where the one-photon decay is allowed. In the second part, so called quadrupole mixed-symmetry is investigated in inelastic proton scattering experiments. In 1930 Nobel-prize winner M. Goeppert-Mayer was the first to discuss the two-photon decay of an exited state in her doctoral thesis. This process has been observed many times in atomic physics. However in nuclear physics data is sparse. Here this decay mode has only been observed for the special case of a transition between nuclear states with spin and parity quantum number 0+. For such a transition, the one-photon decay - the main experimental obstacle to observe the two-photon decay - is forbidden. Furthermore, the energy sharing and angular distributions were measured, allowing conclusions to be drawn about the multipoles contributing to the two-photon transition. Quadrupole mixed-symmetry states are an excitation mode in spherical nuclei which are sensitive to the strength of the quadrupole residual interaction. A new signature for these interesting states is presented which allows identification of mixed-symmetry states independently of electromagnetic transition strengths. Furthermore this signature represents a valuable additional observable to test model predictions for mixed-symmetry states.
Various experimental techniques have been advanced in recent years to measure non-equilibrium energy transformations on themicroscopic scale of single molecules. In general, the systems studied inthe correspondingexperiments are exposed to strong thermal fluctuations and thus the relevant energetic variables such as work and heat become stochastic. This thesis addresses challenging theoretical problems in this active field of current research: 1) Exact analytical solutions of work and heat distributions for isothermal non-equilibrium processes in suitable models are obtained; 2) Corresponding solutions for cyclic processes involving two different heat reservoirs are found; 3) Optimization of periodic driving protocols for such cyclic processes with respect to maximal output power, efficiency and minimal power fluctuations is studied. The exact solutions for work and heat distributionsprovide areference for theoretical investigations of more complicated models, giving insight into the structure of the tail of work distributions andserving asvaluable test cases for simulations of the underlying stochastic processes."
"Advances in Quantum Chemistry" presents surveys of current topics
in this rapidly developing field that has emerged at the cross
section of the historically established areas of mathematics,
physics, chemistry, and biology. It features detailed reviews
written by leading international researchers. This volume focuses
on thetheory of heavy ion physics in medicine.
This book focuses on the assessment of different coal gasification technologies for the utilization of Russian coals with analyses of economically feasible process chains for preparation of marketable products from high-ash coals. The work presented is important in view of the general competitiveness that marks the future of coal in the world. As the cheapest form of fuel (in comparable terms) coal will undoubtedly be in demand resources in the world. The book consists of parts which include an overview about the major coal characteristics, detailed discussion of fundamental aspects of gasification technologies and gasifiers, an introduction into annex concepts, an overview about different technologies of syngas utilization, technical and economic assessment of several coal-to-liquid and coal-to-chemicals routes, and feasibility demonstration for selected process chains. This book is addressed to the management and engineers of Russian coal companies and scientific staff of Russian research institutions working in the field of coal utilization.
"Advances in Atomic, Molecular, and Optical Physics" publishes
reviews of recent developments in a field that is in a state of
rapid growth, as new experimental and theoretical techniques are
used on many old and new problems. Topics covered include related
applied areas, such as atmospheric science, astrophysics, surface
physics and laser physics. Articles are written by distinguished
experts and contain relevant review material and detailed
descriptions of important recent developments.
This thesis focuses on the study and characterization of entanglement and nonlocal correlations constrained under symmetries. It includes original results as well as detailed methods and explanations for a number of different threads of research: positive partial transpose (PPT) entanglement in the symmetric states; a novel, experimentally friendly method to detect nonlocal correlations in many-body systems; the non-equivalence between entanglement and nonlocality; and elemental monogamies of correlations. Entanglement and nonlocal correlations constitute two fundamental resources for quantum information processing, as they allow novel tasks that are otherwise impossible in a classical scenario. However, their elusive characterization is still a central problem in quantum information theory. The main reason why such a fundamental issue remains a formidable challenge lies in the exponential growth in complexity of the Hilbert space as well as the space of multipartite correlations. Physical systems of interest, on the other hand, display symmetries that can be exploited to reduce this complexity, opening the possibility that some of these questions become tractable for such systems.
This thesis describes the first detection of a nuclear transition that had been sought for 40 years, and marks the essential first step toward developing nuclear clocks. Atomic clocks are currently the most reliable timekeepers. Still, they could potentially be outperformed by nuclear clocks, based on a nuclear transition instead of the atomic transitions employed to date. An elusive, extraordinary state in thorium-229 seems to be the only nuclear transition suitable for this purpose and feasible using currently available technology. Despite repeated efforts over the past 40 years, until recently we had not yet successfully detected the decay of this elusive state. Addressing this gap, the thesis lays the foundation for the development of a new, better frequency standard, which will likely have numerous applications in satellite navigation and rapid data transfer. Further, it makes it possible to improve the constraints for time variations of fundamental constants and opens up the field of nuclear coherent control.
This book is exceptional in offering a thorough but accessible introduction to calorimetry that will meet the needs of both students and researchers in the field of particle physics. It is designed to provide the sound knowledge of the basics of calorimetry and of calorimetric techniques and instrumentation that is mandatory for any physicist involved in the design and construction of large experiments or in data analysis. An important feature is the correction of a number of persistent common misconceptions. Among the topics covered are the physics and development of electromagnetic showers, electromagnetic calorimetry, the physics and development of hadron showers, hadron calorimetry, and calibration of a calorimeter. Two chapters are devoted to more promising calorimetric techniques for the next collider. Calorimetry for Collider Physics, an introduction will be of value for all who are seeking a reliable guide to calorimetry that occupies the middle ground between the brief chapter in a generic book on particle detection and the highly complex and lengthy reference book.
Providing the chemical physics field with a forum for critical,
authoritative evaluations in every area of the discipline, the
latest volume of Advances in Chemical Physics continues to provide
significant, up-to-date chapters written by internationally
recognized researchers.
Extensions to the No-Core Shell Model presents three extensions to the No-Core Shell Model (NCSM) that allow for calculations of heavier nuclei, specifically for the p-shell nuclei. The Importance-Truncated NCSM (IT-NCSM) formulated on arguments of multi-configurational perturbation theory selects a small set of basis states from the initially large basis space in which the Hamiltonian is diagonalized. Previous IT-NCSM calculations have proven reliable, however, there has been no thorough investigation of the inherent error in the truncated IT-NCSM calculations. This thesis provides a detailed study of IT-NCSM calculations and compares them to full NCSM calculations to judge the accuracy of IT-NCSM in heavier nuclei. When IT-NCSM calculations are performed, one often needs to extrapolate the ground-state energy from the finite basis (or model) spaces to the full NCSM model space. In this thesis a careful investigation of the extrapolation procedures was performed. On a related note, extrapolations in the NCSM are commonplace, but up to recently did not have the ultraviolet (UV) or infrared (IR) physics under control. This work additionally presents a method that maps the NCSM parameters into an effective-field theory inspired framework, in which the UV and IR physics are treated appropriately. The NCSM is well-suited to describe bound-state properties of nuclei, but is not well-adapted to describe loosely bound systems, such as the exotic nuclei near the neutron drip line. With the inclusion of the Resonating Group Method (RGM), the NCSM / RGM can provide a first-principles description of exotic nuclei and the first extension of the NCSM.
This book covers the complete spectrum of the fundamentals of clocked, regenerative comparators, their state-of-the-art, advanced CMOS technologies, innovative comparators inclusive circuit aspects, their characterization and properties. Starting from the basics of comparators and the transistor characteristics in nanometer CMOS, seven high-performance comparators developed by the authors in 120nm and 65nm CMOS are described extensively. Methods and measurement circuits for the characterization of advanced comparators are introduced. A synthesis of the largely differing aspects of demands on modern comparators and the properties of devices being available in nanometer CMOS, which are posed by the so-called nanometer hell of physics, is accomplished. The book summarizes the state of the art in integrated comparators. Advanced measurement circuits for characterization will be introduced as well as the method of characterization by bit-error analysis usually being used for characterization of optical receivers. The book is compact, and the graphical quality of the illustrations is outstanding. This book is written for engineers and researchers in industry as well as scientists and Ph.D students at universities. It is also recommendable to graduate students specializing on nanoelectronics and microelectronics or circuit design.
In this book, the equilibrium and nonequilibrium properties of continuous phase transitions are studied in various systems, with a special emphasis on understanding how well-established universal traits at equilibrium may be extended into the dynamic realm, going beyond the paradigmatic Kibble-Zurek mechanism of defect formation. This book reports on the existence of a quantum phase transition in a system comprising just a single spin and a bosonic mode (the quantum Rabi model). Though critical phenomena are inherent to many-body physics, the author demonstrates that this small and ostensibly simple system allows us to explore the rich phenomenology of phase transitions, both in- and out-of-equilibrium. Moreover, the universal traits of this quantum phase transition may be realized in a single trapped-ion experiment, thus avoiding the need to scale up the number of constituents. In this system, the phase transition takes place in a suitable limit of system parameters rather than in the conventional thermodynamic limit - a novel notion that the author and his collaborators have dubbed the finite-component system phase transition. As such, the results gathered in this book will open promising new avenues in our understanding and exploration of quantum critical phenomena.
|
You may like...
Exploring Quantum Mechanics - A…
Victor Galitski, Boris Karnakov, …
Hardcover
R6,101
Discovery Miles 61 010
|