![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Atomic & molecular physics
The first version of quantum theory, developed in the mid 1920's, is what is called nonrelativistic quantum theory; it is based on a form of relativity which, in a previous volume, was called Newton relativity. But quickly after this first development, it was realized that, in order to account for high energy phenomena such as particle creation, it was necessary to develop a quantum theory based on Einstein relativity. This in turn led to the development of relativistic quantum field theory, which is an intrinsically many-body theory. But this is not the only possibility for a relativistic quantum theory. In this book we take the point of view of a particle theory, based on the irreducible representations of the Poincare group, the group that expresses the symmetry of Einstein relativity. There are several ways of formulating such a theory; we develop what is called relativistic point form quantum mechanics, which, unlike quantum field theory, deals with a fixed number of particles in a relativistically invariant way. A central issue in any relativistic quantum theory is how to introduce interactions without spoiling relativistic invariance. We show that interactions can be incorporated in a mass operator, in such a way that relativistic invariance is maintained. Surprisingly for a relativistic theory, such a construction allows for instantaneous interactions; in addition, dynamical particle exchange and particle production can be included in a multichannel formulation of the mass operator. For systems of more than two particles, however, straightforward application of such a construction leads to the undesirable property that clusters of widely separated particles continue to interact with one another, even if the interactions between the individual particles are of short range. A significant part of this volume deals with the solution of this problem. Since relativistic quantum mechanics is not as well-known as relativistic quantum field theory, a chapter is devoted to applications of point form quantum mechanics to nuclear physics; in particular we show how constituent quark models can be used to derive electromagnetic and other properties of hadrons.
The present theme concerns the forces of nature, and what investigations of these forces can tell us about the world we see about us. The story of these forces is long and complex, and contains many episodes that are not atypical of the bulk of scientific research, which could have achieved greater acclaim 'if only...'.The intention of this book is to introduce ideas of how the visible world, and those parts of it that we cannot observe, either because they are too small or too large for our scale of perception, can be understood by consideration of only a few fundamental forces. The subject in these pages will be the authority of the commonly termed, laws of physics, which arise from the forces of nature, and the corresponding constants of nature (for example, the speed of light, c, the charge of the electron, e, or the mass of the electron, me).
On July 4, 2012, physicists at the Large Hadron Collider in Geneva madehistory when they discovered an entirely new type of subatomic particle that many scientists believe is the Higgs boson. For forty years, physicists searched for this capstone to the Standard Model of particle physics--the theory that describes both the most elementary components that are known in matter and the forces through which they interact. This particle points to the Higgs field, which provides the key to understanding why elementary particles have mass. In Higgs Discovery, Lisa Randall explains the science behind this monumental discovery, its exhilarating implications, and the power of empty space.
All living matter is comprised of cells, small compartments isolated from the environment by a cell membrane and filled with concentrated solutions of various organic and inorganic compounds. Some organisms are single-cell, where all life functions are performed by that cell. Others have groups of cells, or organs, specializing in one particular function. The survival of the entire organism depends on all of its cells and organs fulfilling their roles. While the cells are studied by different sciences, they are seen differently by biologists, chemists, or physicists. Biologists concentrate their attention on cell structure and function. What the cells consists of? Where are its organelles? What function each organelle fulfils? From a chemists' point of view, a cell is a complex chemical reaction chamber where various molecules are synthesized or degraded. The main question is how these, sometimes very complicated chains of reactions are controlled. Finally, from a physics standpoint, some of the fundamental questions are about the physical movement of all these molecules between organelles within the cell, their exchange with the extracellular medium, as well as electrical phenomena resulting from such transport. The aim of this book is to look into the basic physical phenomena occurring in cells. These physical transport processes facilitate chemical reactions in the cell and various electrical effects, and that in turn leads to biological functions necessary for the cell to satisfy its role in the mother organism. Ultimately, the goals of every cell are to stay alive and to fulfill its function as a part of a larger organ or organism. The first volume of this book is an inventory of physical transport processes occurring in cells while this second volume provides a closer look at how complex biological and physiological cell phenomena result from these very basic physical processes.
This textbook is a unique and ambitious primer of nuclear physics, which introduces recent theoretical and experimental progresses starting from basics in fundamental quantum mechanics. The highlight is to offer an overview of nuclear structure phenomena relevant to recent key findings such as unstable halo nuclei, superheavy elements, neutron stars, nucleosynthesis, the standard model, lattice quantum chromodynamics (LQCD), and chiral effective theory. An additional attraction is that general properties of nuclei are comprehensively explained from both the theoretical and experimental viewpoints. The book begins with the conceptual and mathematical basics of quantum mechanics, and goes into the main point of nuclear physics - nuclear structure, radioactive ion beam physics, and nuclear reactions. The last chapters devote interdisciplinary topics in association with astrophysics and particle physics. A number of illustrations and exercises with complete solutions are given. Each chapter is comprehensively written starting from fundamentals to gradually reach modern aspects of nuclear physics with the objective to provide an effective description of the cutting edge in the field.
This thesis explores two distinct applications of laser spectroscopy: the study of nuclear ground state properties, and element selective radioactive ion beam production. It also presents the methods and results of an investigation into isotope shifts in the mercury isotopic chain. These Resonance Ionization Laser Ion Source (RILIS) developments are detailed, together with an RILIS ionization scheme that allowed laser ionized ion beams of chromium, germanium, radium and tellurium to be generated at the Isotope Mass Separator On-Line (ISOLDE) facility. A combination of laser spectroscopy with decay spectroscopy and mass spectrometry unambiguously demonstrated a cessation of the extreme shape staggering first observed in the 1970s and revealed the characteristic kink at the crossing of the N=126 shell closure. A series of RILIS developments were required to facilitate this experiment, including mercury "ionization scheme" development and the coupling of the RILIS with an arc discharge ion source. Laser spectroscopy has since become a powerful tool for nuclear physics and the Resonance Ionization Laser Ion Source (RILIS), of the ISOLDE facility at CERN, is a prime example. Highlighting important advances in this field, the thesis offers a unique and revealing resource.
Our understanding of subatomic particles developed over many years, although a clear picture of the different particles, their interactions and their inter-relationships only emerged in the latter part of the twentieth century. The first ""subatomic particles"" to be investigated were those which exhibit readily observable macroscopic behavior, specifically these are the photon, which we observe as light and the electron, which is manifested as electricity. The true nature of these particles, however, only became clear within the last century or so. The development of the Standard Model provided clarification of the way in which various particles, specifically the hadrons, relate to one another and the way in which their properties are determined by their structure. The final piece, perhaps, of the final model, that is the means by which some particles acquire mass, has just recently been clarified with the observation of the Higgs boson. Since the 1970s it has been known that the measured solar neutrino flux was inconsistent with the flux predicted by solar models. The existence of neutrinos with mass would allow for neutrino flavor oscillations and would provide an explanation for this discrepancy. Only in the past few years, has there been clear experimental evidence that neutrinos have mass. The description of particle structure on the basis of the Standard Model, along with recent discoveries concerning neutrino properties, provides us with a comprehensive picture of the properties of subatomic particles. Part I of the present book provides an overview of the Standard Model of particle physics including an overview of the discovery and properties of the Higgs boson. Part II of the book summarizes the important investigations into the physics of neutrinos and provides an overview of the interpretation of these studies.
This book covers a broad range of topics from the interdisciplinary research field of ultrafast intense laser science, focusing on atoms and molecules interacting with intense laser fields, laser-induced filamentation, high-order harmonics generation, and high power lasers and their applications. This sixteenth volume features contributions from world-renowned researchers, introducing the latest reports on probing molecular chirality with intense laser fields, and the most recent developments in the Shanghai Superintense Ultrafast Laser Facility project. The PUILS series delivers up-to-date reviews of progress in this emerging interdisciplinary research field, spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each of their own subfields of ultrafast intense laser science. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, especially graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries.
This book is a thoroughly modern and highly pedagogical graduate-level introduction to quantum optics, a subject which has witnessed stunning developments in recent years and has come to occupy a central role in the 'second quantum revolution'. The reader is invited to explore the fundamental role that quantum optics plays in the control and manipulation of quantum systems, leading to ultracold atoms, circuit QED, quantum information science, quantum optomechanics, and quantum metrology. The building blocks of the subject are presented in a sequential fashion, starting from the simplest physical situations before moving to increasingly complicated ones. This pedagogically appealing approach leads to quantum entanglement and measurement theory being introduced early on and before more specialized topics such as cavity QED or laser cooling. The final chapter illustrates the power of scientific cross-fertilization by surveying cutting-edge applications of quantum optics and optomechanics in gravitational wave detection, tests of fundamental physics, searches for dark matter, geophysical monitoring, and ultraprecise clocks. Complete with worked examples and exercises, this book provides the reader with enough background knowledge and understanding to follow the current journal literature and begin producing their own original research.
Electrostatic Accelerators have been at the forefront of modern technology since the development by Sir John Cockroft and Ernest Walton in 1932 of the first accelerator, which was the first to achieve nuclear transmutation and earned them the Nobel Prize in Physics in 1951. The applications of Cockroft and Walton's development have been far reaching, even into our kitchens where it is employed to generate the high voltage needed for the magnetron in microwave ovens. Other electrostatic accelerator related Nobel prize winning developments that have had a major socio-economic impact are; the electron microscope where the beams of electrons are produced by an electrostatic accelerator, X-rays and computer tomography (CT) scanners where the X-rays are produced using an electron accelerator and microelectronic technology where ion implantation is used to dope the semiconductor chips which form the basis of our computers, mobile phones and entertainment systems. Although the Electrostatic Accelerator field is over 90 years old, and only a handful of accelerators are used for their original purpose in nuclear physics, the field and the number of accelerators is growing more rapidly than ever. The objective of this book is to collect together the basic science and technology that underlies the Electrostatic Accelerator field so it can serve as a handbook, reference guide and textbook for accelerator engineers as well as students and researchers who work with Electrostatic Accelerators.
This book gathers the lecture notes of courses given at the 2010 summer school in theoretical physics in Les Houches, France, Session XCIV. Written in a pedagogical style, this volume illustrates how the field of quantum gases has flourished at the interface between atomic physics and quantum optics, condensed matter physics, nuclear and high-energy physics, non-linear physics and quantum information. The physics of correlated atoms in optical lattices is covered from both theoretical and experimental perspectives, including the Bose and Fermi Hubbard models, and the description of the Mott transition. Few-body physics with cold atoms has made spectacular progress and exact solutions for 3-body and 4-body problems have been obtained. The remarkable collisional stability of weakly bound molecules is at the core of the studies of molecular BEC regimes in Fermi gases. Entanglement in quantum many-body systems is introduced and is a key issue for quantum information processing. Rapidly rotating quantum gases and optically induced gauge fields establish a remarkable connection with the fractional quantum Hall effect for electrons in semiconductors. Dipolar quantum gases with long range and anisotropic interaction lead to new quantum degenerate regimes in atoms with large magnetic moments, or electrically aligned polar molecules. Experiments with ultracold fermions show how quantum gases serve as ''quantum simulators'' of complex condensed matter systems through measurements of the equation of state. Similarly, the recent observation of Anderson localization of matter waves in a disordered optical potential makes a fruitful link with the behaviour of electrons in disordered systems.
Nuclear spins are highly coherent quantum objects that were featured in early ideas and demonstrations of quantum information processing. In silicon, the high-fidelity coherent control of a single phosphorus (31-P) nuclear spin I=1/2 has demonstrated record-breaking coherence times, entanglement, and weak measurements. In this thesis, we demonstrate the coherent quantum control of a single antimony (123-Sb) donor atom, whose higher nuclear spin I = 7/2 corresponds to eight nuclear spin states. However, rather than conventional nuclear magnetic resonance (NMR), we employ nuclear electric resonance (NER) to drive nuclear spin transitions using localized electric fields produced within a silicon nanoelectronic device. This method exploits an idea first proposed in 1961 but never realized experimentally with a single nucleus, nor in a non-polar crystal such as silicon. We then present a realistic proposal to construct a chaotic driven top from the nuclear spin of 123-Sb. Signatures of chaos are expected to arise for experimentally realizable parameters of the system, allowing the study of the relation between quantum decoherence and classical chaos, and the observation of dynamical tunneling. These results show that high-spin quadrupolar nuclei could be deployed as chaotic models, strain sensors, hybrid spin-mechanical quantum systems, and quantum-computing elements using all-electrical controls.
This book describes the manipulation of molecular properties, such as orientation, structure, and dynamics, of small molecules and molecular clusters isolated in cold inert matrices by using unprecedentedly strong external electrostatic fields. Manipulation of molecules with controllable external forces is a dream of chemists. Molecules are inherently quantum-mechanical systems, control of which potentially can lead to quantum technology, such as quantum sensing and computing. This book demonstrates a combination of the ice film nanocapacitor method and the matrix isolation technique enabled the application of intense external dc electric fields across the isolated molecules and molecular clusters. Changes in molecular states induced by fields were monitored by means of vibrational spectroscopy. Also, the book presents manipulations of the inversion tunneling dynamics of ammonia molecule and the dislocation of acidic proton in hydrogen chloride-water complex. The book shows that the vibrational spectroscopy with the aid of unprecedentedly strong dc electric field can provide rich information on the electrostatic behaviors of molecules and molecular clusters, which underlie the understanding of intermolecular processes and molecular manipulation.
B Factories are particle colliders at which specific subatomic particles - B mesons - are produced abundantly. The purpose is to study the properties of their decays in great detail in order to shed light on a mystery of eminently larger scale: why do we live in a universe composed of anti-matter? This book introduces readers to the physics laws of the CP asymmetry, touching on experimental requirements needed to perform such measurements at the subatomic level, and illustrating the main findings of the contemporary B Factories.
The dynamics of quantum systems exposed to ultrafast (at the femtosecond time-scale) and strong laser radiation has a highly non-linear character, leading to a number of new phenomena, outside the reach of traditional spectroscopy. The current laser technology makes feasible the probing and control of quantum-scale systems with fields that are as strong as the interatomic Coulombic interactions and time resolution that is equal to (or less than) typical atomic evolution times. It is indispensable that any theoretical description of the induced physical processes should rely on the accurate calculation of the atomic structure and a realistic model of the laser radiation as pulsed fields. This book aims to provide an elementary introduction of theoretical and computational methods and by no means is anywhere near to complete. The selection of the topics as well as the particular viewpoint is best suited for early-stage students and researchers; the included material belongs in the mainstream of theoretical approaches albeit using simpler language without sacrificing mathematical accuracy. Therefore, subjects such as the Hilbert vector-state, density-matrix operators, amplitude equations, Liouville equation, coherent laser radiation, free-electron laser, Dyson-chronological operator, subspace projection, perturbation theory, stochastic density-matrix equations, time-dependent SchrAdinger equation, partial-wave analysis, spherical-harmonics expansions, basis and grid wavefunction expansions, ionization, electron kinetic-energy and angular distributions are presented within the context of laser-atom quantum dynamics.
This thesis describes the application of the collinear resonance laser spectroscopy to sensitively measure the electromagnetic nuclear observables of the neutron-rich indium isotopes 115-131In. This entailed a systematic study of the efficiency of resonant ionization schemes to extract the hyperfine structure of the isotopes, the atomic charge exchange process and benchmarking of modern atomic calculations with a laser ablation ion source. This allowed determination of the root-mean-square nuclear charge radii, nuclear magnetic dipole moments, nuclear electric quadrupole moments and nuclear spins of the 113-131In isotopes with high accuracy. With a proton hole in the Z = 50 nuclear shell closure of tin and several nuclear isomer states, these measurements of the indium (Z = 49) isotope chain provided an efficient probe of the evolution of nuclear structure properties towards and at the doubly-magic nuclear shell closure of 132Sn (N = 82) - revealing unpredicted changes.
Nuclear isomers are the long-lived excited states of nuclei. Therefore, they constitute the meta-stable landscape of nuclei. The first isomer was probably identified as early as 1921. Since then, the number of isomers has been growing steadily picking up pace in recent times. Interest in nuclear isomers has grown in recent years for many reasons. The experimental capabilities to observe isomers have been expanding to cover a wider time scale. This has opened up new windows to observe and decipher the underlying nuclear structure and interactions. Further, the isomers are beginning to be seen as potential energy storage devices and nuclear clocks with a host of applications. Possible discovery of a gamma ray laser has also ignited many researches in this area. Isomers now cover the full nuclear landscape with structural peculiarities specific to each region of the nuclear chart. Exploring the nuclear isomers, therefore, provides a novel insight into the nuclear structure properties of that region. There could be many different reasons for the long lives of excited nuclear states, which lead to the classification of isomers. Isomers are broadly classified in to four classes: Spin isomers, shape isomers, fission isomers and K-isomers. Seniority isomers have also been identified which are often clubbed with the spin isomers. We discuss this classification and the underlying causes in detail. Many examples are considered to highlight the large variety of isomers. The range of half-lives covered by the isomers varies from billions of years to nano-seconds and even small. To understand this vast variation is a fascinating endeavor in itself. The angular momentum couplings, nuclear shapes, pairing etc. conspire together to give this vast range of half-lives. We go through these aspects in detail, highlighting the various selection rules at work. It is interesting that the nuclear shapes play an important role in many types of isomers. The spin isomers, which occur in spherical or, near-spherical nuclei, are generally confined to the magic numbers. Seniority isomers are largely found in semi-magic nuclei and should be explored in conjunction with the spin isomers. New developments in seniority and generalized seniority isomers are discussed in detail. As the nuclei deform; the nature of isomers changes. We take a close look into the decay properties of isomers in deformed nuclei, particularly the K isomers, the shape isomers and the fission isomers. While doing so, the theoretical and experimental developments of isomers are also addressed. A number of open questions are posed for possible new experiments and better understanding of the isomers.
This book presents the proceedings of The International Workshop on Frontiers in High Energy Physics (FHEP 2019), held in Hyderabad, India. It highlights recent, exciting experimental findings from LHC, KEK, LIGO and several other facilities, and discusses new ideas for the unified treatment of cosmology and particle physics and in the light of new observations, which could pave the way for a better understanding of the universe we live in. As such, the book provides a platform to foster collaboration in order to provide insights into this important field of physics.
Written by a former International Atomic Energy Agency (IAEA) nuclear inspector and nuclear security expert, this book provides a comprehensive and authentic overview of current global nuclear developments. The author provides detailed insights into current and past nuclear crises and reveals the technical capabilities, political strategies and motives of nuclear weapon owners. By analyzing the nuclear programs and strategies of various countries, including the USA, Russia, China, Great Britain and France, this book highlights the existing global nuclear threat and the risks it entails for humanity. It also describes the current blockades and suggests possible ways out. Given its scope, the book will appeal to scholars and policymakers interested in gaining new insights into sensitive or complex nuclear programs in various countries. |
![]() ![]() You may like...
Preston Singletary - Raven and the Box…
Miranda Belarde-Lewis, John Drury
Hardcover
R1,287
Discovery Miles 12 870
Arctic Wildlife - An Introduction to…
James Kavanagh, Waterford Press
Pamphlet
R184
Discovery Miles 1 840
Frontiers in Protein Structure…
Dev Bukhsh Singh, Timir Tripathi
Hardcover
R4,657
Discovery Miles 46 570
Hykie Berg: My Storie van Hoop
Hykie Berg, Marissa Coetzee
Paperback
|