![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Atomic & molecular physics
Dalton's theory of the atom is generally considered to be what made
the atom a scientifically fruitful concept in chemistry. To be
sure, by Dalton's time the atom had already had a two-millenium
history as a philosophical idea, and corpuscular thought had long
been viable in natural philosophy (that is, in what we would today
call physics).
Advances in Quantum Chemistry, Volume 86 highlights new advances in the field, with this new volume presenting topics covering Can orbital basis sets compete with explicitly correlated ones for few-electron systems?, Converging high-level equation-of-motion coupled-cluster energetics with the help of Monte Carlo and selected configuration interaction, Coupled cluster downfolding techniques: a review of existing applications in classical and quantum computing for chemical systems, Multi-reference methods for the description of dynamic and nondynamic electron correlation effects in atoms and molecules, Exploring the attosecond laser-driven electron dynamics in the hydrogen molecule with different TD-CI approaches, and much more. Additional sections cover Molecular systems in spatial confinement: variation of linear and nonlinear electrical response of molecules in the bond dissociation processes, Relativistic Infinite-order two-component methods for heavy elements, Second quantized approach to exchange energy revised - beyond the S^2 approximation, Calculating atomic states without the Born-Oppenheimer approximation, Convergence of the Correlated Optimized Effective Potential Method, and more.
Jack Sabin, Scientist and Friend, Volume 85 in the Advances in Quantum Chemistry series, highlights new advances in the field, with chapters in this new release including: Elastic scattering of electrons and positrons from alkali atoms, Dissipative dynamics in many-atom systems, Shape sensitive Raman scattering from Nano-particles, Experience in E-learning and Artificial Intelligence, Structure and Correlation of Charges in a Harmonic Trap, Simulation of Molecular Spectroscopy in Binary Solvents, Approach for Orbital and Total Mean Excitation Energies of Atoms, and A New Generation of Quasiparticle Self-Energies. Additional sections cover: The stopping power of relativistic targets, Density functional methods for extended helical systems, Inspecting nlm-distributions due to charge exchange collisions of bare ions with hydrogen, Long-lived molecular dications: a selected probe for double ionization, and much more.
Advances in Atomic, Molecular, and Optical Physics, Volume 71 provides a comprehensive compilation of recent developments in a field that is in a state of rapid growth as new experimental and theoretical techniques are used on many problems, both old and new. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics, with timely articles written by distinguished experts. Sample content covered in this release includes Attosecond generation and application from X-ray Free Electron Lasers.
Progress in Optics, Volume 67, highlights new advances, with this updated volume presenting interesting chapters on a variety of timely topics in the field. Each chapter is written by an international board of authors. The book contains five reviews of the latest developments in optics.
Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field, one that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry and biology. The book features detailed reviews written by leading international researchers. In this volume, the readers are presented with an exciting combination of themes.
Advances in Atomic, Molecular, and Optical Physics, Volume 70 provides a comprehensive compilation of recent developments in a field that is in a state of rapid growth as new experimental and theoretical techniques are used on many problems, both old and new. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics, with timely articles written by distinguished experts.
Progress in Optics, Volume 66, highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an international board of authors. It contains five reviews of the latest developments in optics.
Quantum Boundaries of Life, Volume 82 in the Advances in Quantum Chemistry series, presents current topics in this rapidly developing field that have emerged at the cross section of mathematics, physics, chemistry and biology. Topics covered include Quantum Considerations of Neural Memory, Functional Neural Electron Transport, Plasmon-polariton mechanism of the saltatory conduction in myelinated axons, Quantum Field Theory Formulation of Brain Dynamics: Nonequilibrium, Multi Field Theory Formulation of Brain Dynamics, Quantum Protein Folding, Classical-Quantum Interplay in Living Neural Tissue Function, Quantum Effects in Life Dynamics, Quantum transport and utilization of free energy in protein a-helices, and much more. The book's message is simple. Mystics prefer to put consciousness in the cosmos to avoid Darwinism. If the seat of consciousness is found to evolve within all animals, then we have a Darwinian understanding not only of the origin of life and species according to natural selection but also concerning consciousness and, in particular, life being quantum Darwinian.
Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field one that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. In this volume the readers are presented with an exciting combination of themes.
Advances in Atomic, Molecular, and Optical Physics, Volume 68, provides a comprehensive compilation of recent developments in a field that is in a state of rapid growth, as new experimental and theoretical techniques are used on many problems, both old and new. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics, with timely articles written by distinguished experts. Updates to this new release include sections on Nonlinear x-ray physics, High intensity QED, Rydberg THz spectroscopy, Ultrafast electron diffraction, Precision Interferometry for Gravitation-wave Detection: Current Status and Future Trends, and more.
Practically every display technology in use today relies on the flat, energy-efficient construction made possible by liquid crystals. These displays provide visually-crisp, vibrantly-colored images that a short time ago were thought only possible in science fiction. Liquid crystals are known mainly for their use in display technologies, but they also provide many diverse and useful applications: adaptive optics, electro-optical devices, films, lasers, photovoltaics, privacy windows, skin cleansers and soaps, and thermometers. The striking images of liquid crystals changing color under polarized lighting conditions are even on display in many museums and art galleries - true examples of 'science meeting art'. Although liquid crystals provide us with visually stunning displays, fascinating applications, and are a rich and fruitful source of interdisciplinary research, their full potential may yet remain untapped.
It was not until 1971 that the authority for defining scientific units, the General Conference of Weights and Measures got around to defining the unit that is the basis of chemistry (the mole, or the quantity of something). Yet for all this tardiness in putting the chemical sciences on a sound quantitative basis, chemistry is an old and venerable subject and one naturally asks the question, why? Well, the truth is that up until the mid-1920s, many physicists did not believe in the reality of molecules. Indeed, it was not until after the physics community had accepted Ernest Rutherford's 1913 solar-system-like model of the atom, and the quantum mechanical model of the coupling of electron spins in atoms that physicists started to take seriously the necessity of explaining the chemical changes that chemists had been observing, investigating and recording since the days of the alchemists.
This book provides a brief exposition of the principles of beam physics and particle accelerators with an emphasis on numerical examples employing readily available computer tools. However, it avoids detailed derivations, instead inviting the reader to use general high-end languages such as Mathcad and Matlab, as well as specialized particle accelerator codes (e.g. MAD, WinAgile, Elegant, and others) to explore the principles presented. This approach allows readers to readily identify relevant design parameters and their scaling. In addition, the computer input files can serve as templates that can be easily adapted to other related situations. The examples and computer exercises comprise basic lenses and deflectors, fringe fields, lattice and beam functions, synchrotron radiation, beam envelope matching, betatron resonances, and transverse and longitudinal emittance and space charge. The last chapter presents examples of two major types of particle accelerators: radio frequency linear accelerators (RF linacs) and storage rings. Lastly, the appendix gives readers a brief description of the computer tools employed and concise instructions for their installation and use in the most popular computer platforms (Windows, Macintosh and Ubuntu Linux). Hyperlinks to websites containing all relevant files are also included. An essential component of the book is its website (actually part of the author's website at the University of Maryland), which contains the files that reproduce results given in the text as well as additional material such as technical notes and movies.
The effect which now bears his name, was discovered in 1958 by Rudolf Moessbauer at the Technical University of Munich. At first, this appeared to be a phenomenon related to nuclear energy levels that provided some information about excited state lifetimes and quantum properties. However, it soon became apparent that Moessbauer spectroscopy had applications in such diverse fields as general relativity, solid state physics, chemistry, materials science, biology, medical physics, archeology and art. It is the extreme sensitivity of the effect to the atomic environment around the probe atom as well as the ability to apply the technique to some interesting and important elements, most notably iron, that is responsible for the Moessbauer effect's extensive use. The present volume reviews the historical development of the Moessbauer effect, the experimental details, the basic physics of hyperfine interactions and some of the numerous applications of Moessbauer effect spectroscopy.
Electrostatic forces are essential for the hierarchical structure of matter: electrons are bound to the atomic nucleus by electrostatic forces; atoms carry (partial) charges and ions with opposite charges attract and form (chemical) bonds. Small residual electrostatic forces between molecules allow them to form macroscopic structures such as crystals. Electrostatic interactions explain pseudo-forces used in popular computer programs used to model properties of atoms, molecules, and proteins. By beginning with the basics and then diving deeper into the topic, this book aims to familiarize the reader with electrostatic forces at the atomic and molecular level.
While neutron halos were discovered 30 years ago, this is the first book written on the subject of this exotic form of nuclei that typically contain many more neutrons than stable isotopes of those elements. It provides an introductory description of the halo and outlines the discovery and evidence for its existence. It also discusses different theoretical models of the halo's structure as well as models and techniques in reaction theory that have allowed us to study the halo. This is written at a level accessible to graduate students starting a PhD in nuclear physics. Halo nuclei are an exotic form of atomic nuclei that contain typically many more neutrons than stable isotopes of those elements. To give you a famous example, an atom of the element lithium has three electrons orbiting a nucleus with three protons and, usually, either 3 or 4 neutrons. The difference in the number of neutrons gives us two different isotopes of lithium, Li6 and Li7. But if you keep adding neutrons to the nucleus you will eventually reach Li11, with still 3 protons (that means it's lithium) but with 8 neutrons. This nucleus is so neutron-rich that the last two are very weakly bound to the rest of the nucleus (a Li9 core). What happens is a quantum mechanical effect: the two outer neutrons float around beyond the rest of the nuclear core at a distance that is beyond the range of the force that is holding them to the core. This is utterly counterintuitive. It means the nucleus looks like a core plus extended diffuse cloud of neutron probability: the halo. The author of the book, Jim Al-Khalili, is a theoretician who published some of the key papers on the structure of the halo in the mid and late 90s and was the first to determine its true size. This monograph is based on review articles he has written on the mathematical models used to determine the halo structure and the reactions used to model that structure.
Monte Carlo methods have been very prominent in computer simulation of various systems in physics, chemistry, biology, and materials science. This book focuses on the discussion and path-integral quantum Monte Carlo methods in many-body physics and provides a concise but complete introduction to the Metropolis algorithm and its applications in these two techniques. To explore the schemes in clarity, several quantum many-body systems are analysed and studied in detail. The book includes exercises to help digest the materials covered. It can be used as a tutorial to learn the discussion and path-integral Monte Carlo or a recipe for developing new research in the reader's own area. Two complete Java programs, one for the discussion Monte Carlo of 4^He clusters on a graphite surface and the other for the path-integral Monte Carlo of cold atoms in a potential trap, are ready for download and adoption.
Progress in Optics, Volume 62, an ongoing series, contains more than 300 review articles by distinguished research workers that have become permanent records for many important developments. In this updated volume, users will find valuable updates on topics such as optical testing, the modern aspects of intensity interferometry with classical light, the generation of partially coherent beams, optical models and symmetries, and more. This book's contributions have become standard references in scientific articles, providing the state-of-the-art to researchers and practitioners who work in the field of optics. |
![]() ![]() You may like...
Relativity, Symmetry, and the Structure…
William H Klink, Wolfgang Schweiger
Hardcover
R1,992
Discovery Miles 19 920
Advances in Atomic, Molecular, and…
Ennio Arimondo, Chun C. Lin, …
Hardcover
R5,328
Discovery Miles 53 280
NMR of Paramagnetic Molecules, Volume 2…
Ivano Bertini, Claudio Luchinat, …
Hardcover
Advances in Atomic, Molecular, and…
Ennio Arimondo, Chun C. Lin, …
Hardcover
R5,641
Discovery Miles 56 410
Molecular Interactions On…
Andrew Thye Shen Wee, Kostya S Novoselov, …
Hardcover
R3,920
Discovery Miles 39 200
|