|
Books > Science & Mathematics > Physics > Atomic & molecular physics
A series of seminal technological revolutions has led to a new
generation of electronic devices miniaturized to such tiny scales
where the strange laws of quantum physics come into play. There is
no doubt that, unlike scientists and engineers of the past,
technology leaders of the future will have to rely on quantum
mechanics in their everyday work. This makes teaching and learning
the subject of paramount importance for further progress. Mastering
quantum physics is a very non-trivial task and its deep
understanding can only be achieved through working out real-life
problems and examples. It is notoriously difficult to come up with
new quantum-mechanical problems that would be solvable with a
pencil and paper, and within a finite amount of time. This book
remarkably presents some 700+ original problems in quantum
mechanics together with detailed solutions covering nearly 1000
pages on all aspects of quantum science. The material is largely
new to the English-speaking audience. The problems have been
collected over about 60 years, first by the lead author, the late
Prof. Victor Galitski, Sr. Over the years, new problems were added
and the material polished by Prof. Boris Karnakov. Finally, Prof.
Victor Galitski, Jr., has extended the material with new problems
particularly relevant to modern science.
Dalton's theory of the atom is generally considered to be what made
the atom a scientifically fruitful concept in chemistry. To be
sure, by Dalton's time the atom had already had a two-millenium
history as a philosophical idea, and corpuscular thought had long
been viable in natural philosophy (that is, in what we would today
call physics).
Atoms in Chemistry will examine episodes in the evolution of the
concept of the atom, particularly in chemistry, from Dalton's day
to our own. It begins with an overview of scientific atomic
theories from the 17th through 20th centuries that analyzes
corpuscular theories of matter proposed or entertained by natural
philosophers in the 17th century. Chapters will focus on
philosophical and religious conceptions of matter, 19th-century
organic structural theories, the debate surrounding the truth of
the atomic-molecular theory, and physical evidence accumulated in
the late 19th and early 20th centuries that suggested that atoms
were actually real, even if they were not exactly as Dalton
envisioned them. The final chapter of this book takes the reader
beyond the atom itself to some of the places associated with the
history of scientific atomism. As a whole, this volume will serve
as a passport to important episodes from the more than 200-year
history of atoms in chemistry.
This book is on inertial confinement fusion, an alternative way to
produce electrical power from hydrogen fuel by using powerful
lasers or particle beams. Two huge laser facilities are presently
under construction to show that this method works. It involves the
compression of tiny amounts (micrograms) of fuel to thousand times
solid density and pressures otherwise existing only in the centre
of stars. Thanks to advances in laser technology, it is now
possible to produce such extreme states of matter in the
laboratory. Recent developments have boosted laser intensities
again with new possibilities for laser particle accelerators, laser
nuclear physics, and fast ignition of fusion targets. This is a
reference book for those working on beam plasma physics, be it in
the context of fundamental research or applications to fusion
energy or novel ultra-bright laser sources. The book combines quite
different areas of physics: beam target interaction, dense plasmas,
hydrodynamic implosion and instabilities, radiative energy transfer
as well as fusion reactions. Particular attention is given to
simple and useful modeling, including dimensional analysis and
similarity solutions. Both authors have worked in this field for
more than 20 years. They want to address in particular those
teaching this topic to students and all those interested in
understanding the technical basis.
This textbook describes the physics of semiconductor nanostructures
with emphasis on their electronic transport properties. At its
heart are five fundamental transport phenomena: quantized
conductance, tunnelling transport, the Aharonov-Bohm effect, the
quantum Hall effect, and the Coulomb blockade effect.
The book starts out with the basics of solid state and
semiconductor physics, such as crystal structure, band structure,
and effective mass approximation, including spin-orbit interaction
effects important for research in semiconductor spintronics. It
contains material aspects such as band engineering, doping, gating,
and a selection of nanostructure fabrication techniques. The book
discusses the Drude-Boltzmann-Sommerfeld transport theory as well
as conductance quantization and the Landauer-Buttiker theory. These
concepts are extended to mesoscopic interference phenomena and
decoherence, magnetotransport, and interaction effects in
quantum-confined systems, guiding the reader from fundamental
effects to specialized state-of-the-art experiments.
The book will provide a thorough introduction into the topic for
graduate and PhD students, and will be a useful reference for
lecturers and researchers working in the field.
Advances in Quantum Chemistry, Volume 86 highlights new advances in
the field, with this new volume presenting topics covering Can
orbital basis sets compete with explicitly correlated ones for
few-electron systems?, Converging high-level equation-of-motion
coupled-cluster energetics with the help of Monte Carlo and
selected configuration interaction, Coupled cluster downfolding
techniques: a review of existing applications in classical and
quantum computing for chemical systems, Multi-reference methods for
the description of dynamic and nondynamic electron correlation
effects in atoms and molecules, Exploring the attosecond
laser-driven electron dynamics in the hydrogen molecule with
different TD-CI approaches, and much more. Additional sections
cover Molecular systems in spatial confinement: variation of linear
and nonlinear electrical response of molecules in the bond
dissociation processes, Relativistic Infinite-order two-component
methods for heavy elements, Second quantized approach to exchange
energy revised - beyond the S^2 approximation, Calculating atomic
states without the Born-Oppenheimer approximation, Convergence of
the Correlated Optimized Effective Potential Method, and more.
Jack Sabin, Scientist and Friend, Volume 85 in the Advances in
Quantum Chemistry series, highlights new advances in the field,
with chapters in this new release including: Elastic scattering of
electrons and positrons from alkali atoms, Dissipative dynamics in
many-atom systems, Shape sensitive Raman scattering from
Nano-particles, Experience in E-learning and Artificial
Intelligence, Structure and Correlation of Charges in a Harmonic
Trap, Simulation of Molecular Spectroscopy in Binary Solvents,
Approach for Orbital and Total Mean Excitation Energies of Atoms,
and A New Generation of Quasiparticle Self-Energies. Additional
sections cover: The stopping power of relativistic targets, Density
functional methods for extended helical systems, Inspecting
nlm-distributions due to charge exchange collisions of bare ions
with hydrogen, Long-lived molecular dications: a selected probe for
double ionization, and much more.
Advances in Atomic, Molecular, and Optical Physics, Volume 71
provides a comprehensive compilation of recent developments in a
field that is in a state of rapid growth as new experimental and
theoretical techniques are used on many problems, both old and new.
Topics covered include related applied areas, such as atmospheric
science, astrophysics, surface physics, and laser physics, with
timely articles written by distinguished experts. Sample content
covered in this release includes Attosecond generation and
application from X-ray Free Electron Lasers.
Progress in Optics, Volume 67, highlights new advances, with this
updated volume presenting interesting chapters on a variety of
timely topics in the field. Each chapter is written by an
international board of authors. The book contains five reviews of
the latest developments in optics.
Advances in Quantum Chemistry presents surveys of current topics in
this rapidly developing field, one that has emerged at the cross
section of the historically established areas of mathematics,
physics, chemistry and biology. The book features detailed reviews
written by leading international researchers. In this volume, the
readers are presented with an exciting combination of themes.
Advances in Atomic, Molecular, and Optical Physics, Volume 70
provides a comprehensive compilation of recent developments in a
field that is in a state of rapid growth as new experimental and
theoretical techniques are used on many problems, both old and new.
Topics covered include related applied areas, such as atmospheric
science, astrophysics, surface physics, and laser physics, with
timely articles written by distinguished experts.
Progress in Optics, Volume 66, highlights new advances in the
field, with this new volume presenting interesting chapters. Each
chapter is written by an international board of authors. It
contains five reviews of the latest developments in optics.
Quantum Boundaries of Life, Volume 82 in the Advances in Quantum
Chemistry series, presents current topics in this rapidly
developing field that have emerged at the cross section of
mathematics, physics, chemistry and biology. Topics covered include
Quantum Considerations of Neural Memory, Functional Neural Electron
Transport, Plasmon-polariton mechanism of the saltatory conduction
in myelinated axons, Quantum Field Theory Formulation of Brain
Dynamics: Nonequilibrium, Multi Field Theory Formulation of Brain
Dynamics, Quantum Protein Folding, Classical-Quantum Interplay in
Living Neural Tissue Function, Quantum Effects in Life Dynamics,
Quantum transport and utilization of free energy in protein
a-helices, and much more. The book's message is simple. Mystics
prefer to put consciousness in the cosmos to avoid Darwinism. If
the seat of consciousness is found to evolve within all animals,
then we have a Darwinian understanding not only of the origin of
life and species according to natural selection but also concerning
consciousness and, in particular, life being quantum Darwinian.
Advances in Quantum Chemistry presents surveys of current topics in
this rapidly developing field one that has emerged at the cross
section of the historically established areas of mathematics,
physics, chemistry, and biology. It features detailed reviews
written by leading international researchers. In this volume the
readers are presented with an exciting combination of themes.
Advances in Atomic, Molecular, and Optical Physics, Volume 68,
provides a comprehensive compilation of recent developments in a
field that is in a state of rapid growth, as new experimental and
theoretical techniques are used on many problems, both old and new.
Topics covered include related applied areas, such as atmospheric
science, astrophysics, surface physics, and laser physics, with
timely articles written by distinguished experts. Updates to this
new release include sections on Nonlinear x-ray physics, High
intensity QED, Rydberg THz spectroscopy, Ultrafast electron
diffraction, Precision Interferometry for Gravitation-wave
Detection: Current Status and Future Trends, and more.
Practically every display technology in use today relies on the
flat, energy-efficient construction made possible by liquid
crystals. These displays provide visually-crisp, vibrantly-colored
images that a short time ago were thought only possible in science
fiction. Liquid crystals are known mainly for their use in display
technologies, but they also provide many diverse and useful
applications: adaptive optics, electro-optical devices, films,
lasers, photovoltaics, privacy windows, skin cleansers and soaps,
and thermometers. The striking images of liquid crystals changing
color under polarized lighting conditions are even on display in
many museums and art galleries - true examples of 'science meeting
art'. Although liquid crystals provide us with visually stunning
displays, fascinating applications, and are a rich and fruitful
source of interdisciplinary research, their full potential may yet
remain untapped.
It was not until 1971 that the authority for defining scientific
units, the General Conference of Weights and Measures got around to
defining the unit that is the basis of chemistry (the mole, or the
quantity of something). Yet for all this tardiness in putting the
chemical sciences on a sound quantitative basis, chemistry is an
old and venerable subject and one naturally asks the question, why?
Well, the truth is that up until the mid-1920s, many physicists did
not believe in the reality of molecules. Indeed, it was not until
after the physics community had accepted Ernest Rutherford's 1913
solar-system-like model of the atom, and the quantum mechanical
model of the coupling of electron spins in atoms that physicists
started to take seriously the necessity of explaining the chemical
changes that chemists had been observing, investigating and
recording since the days of the alchemists.
This book provides a brief exposition of the principles of beam
physics and particle accelerators with an emphasis on numerical
examples employing readily available computer tools. However, it
avoids detailed derivations, instead inviting the reader to use
general high-end languages such as Mathcad and Matlab, as well as
specialized particle accelerator codes (e.g. MAD, WinAgile,
Elegant, and others) to explore the principles presented. This
approach allows readers to readily identify relevant design
parameters and their scaling. In addition, the computer input files
can serve as templates that can be easily adapted to other related
situations. The examples and computer exercises comprise basic
lenses and deflectors, fringe fields, lattice and beam functions,
synchrotron radiation, beam envelope matching, betatron resonances,
and transverse and longitudinal emittance and space charge. The
last chapter presents examples of two major types of particle
accelerators: radio frequency linear accelerators (RF linacs) and
storage rings. Lastly, the appendix gives readers a brief
description of the computer tools employed and concise instructions
for their installation and use in the most popular computer
platforms (Windows, Macintosh and Ubuntu Linux). Hyperlinks to
websites containing all relevant files are also included. An
essential component of the book is its website (actually part of
the author's website at the University of Maryland), which contains
the files that reproduce results given in the text as well as
additional material such as technical notes and movies.
The effect which now bears his name, was discovered in 1958 by
Rudolf Moessbauer at the Technical University of Munich. At first,
this appeared to be a phenomenon related to nuclear energy levels
that provided some information about excited state lifetimes and
quantum properties. However, it soon became apparent that
Moessbauer spectroscopy had applications in such diverse fields as
general relativity, solid state physics, chemistry, materials
science, biology, medical physics, archeology and art. It is the
extreme sensitivity of the effect to the atomic environment around
the probe atom as well as the ability to apply the technique to
some interesting and important elements, most notably iron, that is
responsible for the Moessbauer effect's extensive use. The present
volume reviews the historical development of the Moessbauer effect,
the experimental details, the basic physics of hyperfine
interactions and some of the numerous applications of Moessbauer
effect spectroscopy.
Electrostatic forces are essential for the hierarchical structure
of matter: electrons are bound to the atomic nucleus by
electrostatic forces; atoms carry (partial) charges and ions with
opposite charges attract and form (chemical) bonds. Small residual
electrostatic forces between molecules allow them to form
macroscopic structures such as crystals. Electrostatic interactions
explain pseudo-forces used in popular computer programs used to
model properties of atoms, molecules, and proteins. By beginning
with the basics and then diving deeper into the topic, this book
aims to familiarize the reader with electrostatic forces at the
atomic and molecular level.
|
|