![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Atomic & molecular physics
A comprehensive review of ion beam application in modern materials research is provided, including the basics of ion beam physics and technology. The physics of ion-solid interactions for ion implantation, ion beam synthesis, sputtering and nano-patterning is treated in detail. Its applications in materials research, development and analysis, developments of special techniques and interaction mechanisms of ion beams with solid state matter result in the optimization of new material properties, which are discussed thoroughly. Solid-state properties optimization for functional materials such as doped semiconductors and metal layers for nano-electronics, metal alloys, and nano-patterned surfaces is demonstrated. The ion beam is an important tool for both materials processing and analysis. Researchers engaged in solid-state physics and materials research, engineers and technologists in the field of modern functional materials will welcome this text.
This book ushers in a new era of experimental and theoretical investigations into collective processes, structure formation, and self-organization of nuclear matter. It reports the results of experiments wherein for the first time the nuclei constituting our world (those displayed in Mendeleev's table as well as the super-heavy ones) have been artificially created. Pioneering breakthroughs are described, achieved at the Proton-21 Laboratory, Kiev, Ukraine, in a variety of new physical and technological directions.A detailed description of the main experiments, their analyses, and the interpretation of copious experimental data are given, along with the methodology governing key measurements and the processing algorithms of the data that empirically confirm the occurrence of macroscopic self-organizing processes leading to the nuclear transformations of various materials.
Fullerene Polymers and Fullerene Polymer Composites is an in-depth experimental and theoretical account of polymers and composites whose unusual properties, such as, photophysical phenomena, electrical transport, phase transitions and magnetic properties, stem from the incorporation of C60 in the material. Each chapter is written by an internationally renowned expert who has published extensively in this sub-field of fullerene materials. Introductory chapters on the fundamental properties of fullerenes (C60, C70) and photophysical phenomena in fullerenes and polymers are also included.
Highly charged ions are the most chemically reactive species known
to mankind. This reactivity is due to the extremely large potential
energy they posses. This textbook deals with the wide range of
interactions which occur when such ions interact with other forms
of matter, especially solid surfaces and gasses. Particular
emphasis is placed on situations where the kinetic energy
associated with the interactions is small so that the effects of
the high potential energy are most apparent. Experimental and
theoretical techniques of investigation are covered in addition to
the findings they produce.
The first presentation of the novel interdisciplinary optical remote sensing technique for various ionized diluted media, based on the collisional polarization of the spectoral emission. The book provides a methodology of the impact spectropolarimetic sensing of many solutions to many practical diagnostic problems.
Since the early days of modem physics spectroscopic techniques have been employed as a powerful tool to assess existing theoretical models and to uncover novel phenomena that promote the development of new concepts. Conventionally, the system to be probed is prepared in a well-defined state. Upon a controlled perturbation one measures then the spectrum of a single particle (electron, photon, etc.) emitted from the probe. The analysis of this single particle spectrum yields a wealth of important information on the properties of the system, such as optical and magnetic behaviour. Therefore, such analysis is nowadays a standard tool to investigate and characterize a variety of materials. However, it was clear at a very early stage that real physical compounds consist of many coupled particles that may be excited simultaneously in response to an external perturbation. Yet, the simultaneous (coincident) detection of two or more excited species proved to be a serious technical obstacle, in particular for extended electronic systems such as surfaces. In recent years, however, coincidence techniques have progressed so far as to image the multi-particle excitation spectrum in an impressive detail. Correspondingly, many-body theoretical concepts have been put forward to interpret the experimental findings and to direct future experimental research. This book gives a snapshot of the present status of multi-particle coincidence studies both from a theoretical and an experimental point of view. It also includes selected topical review articles that highlight the achievements and the power of coincident techniques.
Molecular Materials with Specific Interactions: Modeling and Design has a very interdisciplinary character and is intended to provide basic information as well as the details of theory and examples of its application to experimentalists and theoreticians interested in modeling molecular properties and putting into practice rational design of new materials. One of the first requirements to initiate the molecular modeling of molecular materials is an accurate and realistic description of the electronic structure, intermolecular interactions and chemical reactions at microscopic and macroscopic scale. Therefore the first four chapters contain an extensive introduction into the latest theories of intermolecular interactions, functional density techniques, microscopic and mezoscopic modeling techniques as well as first-principle molecular dynamics.
A collection of infrared and Raman spectra of 500 natural and synthetic polymers of industrial importance is presented in this book. A large variety of compounds are included, starting with linear polyolefins and finishing with complex biopolymers and related compounds. The spectra were registered using Infrared Fourier Transform Spectrometers in the laboratory of the All-Russia Institute of Forensic Sciences. The IR and Raman spectra are presented together on the same sheet. The accompanying data include general and structure formulae, CAS register numbers, and sample preparation conditions. Features of this book: Continues the long tradition of publishing specific and standard data of new chemical compounds. For low-molecular weight substances, complementary IR and Raman spectra are featured on the same sample and printed on the same page. This "fingerprint" data allows the substance of the sample to be identified without doubt. An important feature of this unique collection of data is the increase in the identification precision of unknown substances. Peak tables are available in digital (ASCII) format, on a diskette delivered with the book. This allows the user to search for unknowns. All the spectra in the collection are base-line corrected. This book will be of interest to scientists involved in the synthesis of new polymeric materials, polymer identification, and quality control. Libraries of scientific institutes, research centers, and universities involved in vibrational spectroscopy will also find this collection invaluable."
a ~Soft Matter Under Exogenic Impactsa (TM) is fairly unique in supplying a comprehensive presentation of high pressures, negative pressures, random constraints and strong electric field exogenic (external) impacts on various soft matter systems. These are: (i) critical liquids, (ii) glass formers, such as supercooled liquids including water, polymers and resins, (iii) liquid crystals and (iv) bio-liquids. It is, because of this, an excellent guide in this novel and still puzzling research area. Besides new results, the identification of new types of physical behavior, new technological materials, ultimate verification of condensed and soft matter physics models, new applications in geophysics, biophysics, biotechnology, are all discussed in this book. a ~Soft Matter Under Exogenic Impactsa (TM) comes as a result from the ARW NATO brainstorming discussion in Odessa, Ukraine (8-12 Oct. 2005). It contains 31 papers prepared by key specialists in the field, which include amongst others: H. E. Stanley (USA), K. L. Ngai (USA), C. M. Roland (USA), M. A. Anisimov (USA), G. P. Johari (Canada), M.-C. Bellisent (France), A. R. Imre (Hungary), G. Floudas (Greece), Th. Kraska (Germany), A. Chalyi (Ukraine), E. E. Ustjuzhanin (Russia), J. L. Tamarit (Spain) and S. Kralj (Slovenia).
This monograph represents a critical survey of the outstanding
capabilities of X-ray
Professor Philip G. Burke, CBE, FRS formally retired on 30 September 1998. To recognise this occasion some of his colleagues, friends, and former students decided to hold a conference in his honour and to present this volume as a dedication to his enormous contribution to the theoretical atomic physics community. The conference and this volume of the invited talks reflect very closely those areas with which he has mostly been asso- ated and his influence internationally on the development of atomic physics coupled with a parallel growth in supercomputing. Phil's wide range of interests include electron-atom/molecule collisions, scattering of photons and electrons by molecules adsorbed on surfaces, collisions involving oriented and chiral molecules, and the development of non-perturbative methods for studying multiphoton processes. His devel- ment of the theory associated with such processes has enabled important advances to be made in our understanding of the associated physics, the interpretation of experimental data, has been invaluable in application to fusion processes, and the study of astrophysical plasmas (observed by both ground- and space-based telescopes). We therefore offer this volume as our token of affection and respect to Philip G. Burke, with the hope that it may also fill a gap in the literature in these important fields.
"Paradox" conjures up arrows and tortoises. But it has a speculative, gedanken ring: no one would dream of really conjuring up Achilles to confirm that he catches the tortoise. The paradox of Einstein, Podolsky, and Rosen, however, is capable of empirical test. Attempted experimental resolutions have involved photons, but these are not detected often enough to settle the matter. Kaons are easier to detect and will soon be used to discriminate between quantum mechanics and local realism. The existence ofan objective physical reality, which had disappeared behind the impressive formalism of quantum mechanics, was originally intended to be the central issue of the paradox; locality, like the mathematics used, was just assumed to hold. Quantum mechanics, with its incompatible measurements, was born rather by chance in an atmosphere of great positivistic zeal, in which only the obviously measurable had scientific respectability. Speculation about occult "unobservable" quantities was viewed as vacuous metaphysics, which should surely form no part of a mature scientific attitude. Soon the "unmeasurable, " once only disreputable, vanished altogether. One had first been told not to worry about it; then, as dogma got more carefully defined, one was assured that the unobserved was just not there. This made it easier not to think about it and to avoid hazardous metaphysical temptation.
The four articles of the present volume address very different topics in nuclear physics and, indeed, encompass experiments at very different kinds of exp- imental facilities. The range of interest of the articles extends from the nature of the substructure of the nucleon and the deuteron to the general properties of the nucleus, including its phase transitions and its rich and unexpected quantal properties. The first article by Fillipone and Ji reviews the present experimental and theoretical situation pertaining to our knowledge of the origin of the spin of the nucleon. Until about 20 years ago the half-integral spin of the neutron and p- ton was regarded as their intrinsic property as Dirac particles which were the basic building blocks of atomic nuclei. Then, with the advent of the Standard Model and of quarks as the basic building blocks, the substructure of the - cleon became the subject of intense interest. Initial nonrelativistic quark m- els assigned the origin of nucleon spin to the fundamental half-integral spin of its three constituent quarks, leaving no room for contributions to the spin from the gluons associated with the interacting quarks or from the orbital angular momentum of either gluons or quarks. That naive understanding was shaken, about fifteen years ago, by experiments involving deep-inelastic scattering of electrons or muons from nucleons.
The 12th Winter Workshop on Nuclear Dynamics carried on the tradition, started in 1978, of bringing together scientists working in all regimes of nuclear dynamics. This broad range of related topics allows the researcher attending the Workshop to be exposed to work that normally would be considered outside his/her field, but could po tentially add a new dimension to the understanding of his/her work. At Snowbird, we brought together experimentalists working with heavy ion beams from 10 MeV/nucleon up to 200 GeV /nucleon and theoretical physicists working in diverse areas ranging from antisymmetrized fermionic dynamics to perturbative quantum chromo dynamics. Fu ture work at RHIC was discussed also, with presentations from several of the experimen tal groups. In addition, several talks addressed issues of cross-disciplinary relevance, from the study of water-drop-collisions, to the multi-fragmentation of buckyballs. Clearly the field of nuclear dynamics has a bright future. The understanding of the nuclear equation of state in all of its manifestations is being expanded on all fronts both theoretically and experimentally. Future Workshops on Nuclear Dynamics will certainly have much progress to report. Gary D. Westfall Wolfgang Bauer Michigan State Universzty v PREVIOUS WORKSHOPS The following table contains a list of the dates and locations of the previous Winter Workshops on Nuclear Dynamics as well as the members of the organizing committees. The chairpersons of the conferences are underlined."
Research on photon and electron collisions with atomic and molecular targets and their ions has seen a rapid increase in interest, both experimentally and theoretically, in recent years. This is partly because these processes provide an ideal means of investigating the dynamics of many particle systems at a fundamental level and partly because their detailed understanding is required in many other fields, particularly astrophysics, plasma physics and controlled thermonuclear fusion, laser physics, atmospheric processes, isotope separation, radiation physics and chemistry and surface science. In recent years a number of important advances have been made, both on the experimental side and on the theoretical side. On the experimental side these include absolute measurements of cross sections, experiments using coincidence techniques, the use of polarised beams and targets, the development of very high energy resolution electron beams, the use of synchrotron radiation sources and ion storage rings, the study of laser assisted atomic collisions, the interaction of super-intense lasers with atoms and molecules and the increasing number of studies using positron beams.
This book celebrates the career and scientific accomplishments of Professor David Buckingham, who is due to retire from his Chair at Cambridge University in 1997. The adopted format comprises reprints of a number of David Buckingham's key scientific papers, each one or two of these preceded by a review of the corresponding area of David's wide-ranging research interest. Each reviewer is recognised as an expert in that field of interest and has some close association with David Buckingham, as a scientific colleague and/or a former research student. The book should serve as a distinctive reference source, both retrospective and prospective, for the field of chemical physics with which the name A.D. Buckingham is associated. The editors opted to reprint a majority of early classic Buckingham papers, balanced by some of David Buckingham's more recent publications. Reprinted papers have been placed into a general scientific context that covers prior influences on, and later impacts by, the work nominated for review.
This second volume of the Charged Particle Traps deals with the rapidly expanding body of research exploiting the electromagnetic con?nement of ions, whose principles and techniques were the subject of volume I. These applications include revolutionary advances in diverse ?elds, ranging from such practical ?elds as mass spectrometry, to the establishment of an ult- stable standard of frequency and the emergent ?eld of quantum computing made possible by the observation of the quantum behavior of laser-cooled con?nedions. Bothexperimentalandtheoreticalactivity intheseapplications has proliferated widely, and the number of diverse articles in the literature on its many facets has reached the point where it is useful to distill and organize the published work in a uni?ed volume that de?nes the current status of the ?eld. As explained in volume I, the technique of con?ning charged particles in suitable electromagnetic ?elds was initially conceived by W. Paul as a thr- dimensional version of his rf quadrupole mass ?lter. Its ?rst application to rf spectroscopy on atomic ions was completed in H. G. Dehmelt's laboratory where notable work was later done on the free electron using the Penning trap. The further exploitation of these devices has followed more or less - dependently along the two initial broad areas: mass spectrometry and high resolution spectroscopy. In volume I a detailed account is given of the theory of operation and experimental techniques of the various forms of Paul and Penning ion traps.
.
This thesis presents results crucial to the emerging field of indirect excitons. These specially designed quasiparticles give the unique opportunity to study fundamental properties of quantum degenerate Bose gases in semiconductors. Furthermore, indirect excitons allow for the creation of novel optoelectronic devices where excitons are used in place of electrons. Excitonic devices are explored for the development of advanced signal processing seamlessly coupled with optical communication. The thesis presents and describes the author's imaging experiments that led to the discovery of spin transport of excitons. The many firsts presented herein include the first studies of an excitonic conveyer, leading to the discovery of the dynamical localization-delocalization transition for excitons, and the first excitonic ramp and excitonic diode with no energy-dissipating voltage gradient.
In Elements, Principles and Particles, Antonio Clericuzio explores the relationships between chemistry and corpuscular philosophy in the age of the Scientific Revolution. Science historians have regarded chemistry and corpuscular philosophy as two distinct traditions. Clericuzio's view is that since the beginning of the 17th century atomism and chemistry were strictly connected. This is attested by Daniel Sennert and by many hitherto little-known French and English natural philosophers. They often combined a corpuscular theory of matter with Paracelsian chemical (and medical) doctrines. Boyle plays a central part in the present book: Clericuzio redefines Boyle's chemical views, by showing that Boyle did not subordinate chemistry to the principles of mechanical philosophy. When Boyle explained chemical phenomena, he had recourse to corpuscles endowed with chemical, not mechanical, properties. The combination of chemistry and corpuscular philosophy was adopted by a number of chemists active in the last decades of the 17th century, both in England and on the Continent. Using a large number of primary sources, the author challenges the standard view of the corpuscular theory of matter as identical with the mechanical philosophy. He points out that different versions of the corpuscular philosophy flourished in the 17th century. Most of them were not based on the mechanical theory, i.e. on the view that matter is inert and has only mechanical properties. Throughout the 17th century, active principles, as well as chemical properties, are attributed to corpuscles. Given its broad coverage, the book is a significant contribution to both history of science and history of philosophy.
Explicitly Correlated Wave Functions in Chemistry and Physics is
the first book devoted entirely to explicitly correlated wave
functions and their theory and applications in chemistry and
molecular and atomic physics. Explicitly correlated wave functions
are functions that depend explicitly on interelectronic distance.
Each scientist works with certain information and collects it in the course of prof- sional activity. In the same manner, the author collected data for atomic physics and atomic processes. This information was checked in the course of the author's p- fessional activity and was published in the form of appendices to the corresponding books on atomic and plasma physics. Now it has been decided to publish these data separately. This book contains atomic data and useful information about atomic particles and atomic systems including molecules, nanoclusters, metals and condensed s- tems of elements. It also gives information about atomic processes and transport processes in gases and plasmas. In addition, the book deals with general concepts and simple models for these objects and processes. We give units and conversion factors for them as well as conversion factors for spread formulas of general physics and the physics of atoms, clusters and ionized gases since such formulas are used in professional practice by each scientist of this area.
The "Rudolf Moessbauer Story" recounts the history of the discovery of the "Moessbauer Effect" in 1958 by Rudolf Moessbauer as a graduate student of Heinz Maier-Leibnitz for which he received the Nobel Prize in 1961 when he was 32 years old. The development of numerous applications of the Moessbauer Effect in many fields of sciences , such as physics, chemistry, biology and medicine is reviewed by experts who contributed to this wide spread research. In 1978 Moessbauer focused his research interest on a new field "Neutrino Oscillations" and later on the study of the properties of the neutrinos emitted by the sun.
The great advantage of coincidence measurements is that by suitable choice of the kinematical and geometrical arrangement one may probe delicate physical effects which would be swamped in less differential experiments. The measurement of the triple dif ferential and higher-order cross sections presents enormous technical difficulties, but refined experiments of this type provide an insight into the subtleties of the scattering process and offer a welcome, if severe, test of the available theoretical models. The last few years have been an exciting time to work in the field and much has been learned. Profound insights have been gleaned into the basic Coulomb few body problem in atomic physics: the experimental study of the fundamental (e,2e) processes on hydrogen and helium targets continues to add to our knowledge and indeed to challenge the best of our theoretical models; significant advances have been made in the understanding of the "double excitation problem," that is the study of ionization processes with two active target electrons: important measurements of (e,3e), (, ), 2e), excitation-ionization and excitation autoionization have been reported and strides have been made in their theoretical description; the longstanding discrepancies between theory and experiment for relativistic (e,2e) processes were resolved, spin dependent effects predicted and ob served and the first successful coincidence experiments on surfaces and thin films were announced. Theory and experiment have advanced in close consort. The papers pre sented here cover the whole gambit of research in the field. Much has been achieved but much remains to be done."
This thesis discusses in detail the measurement of the polarizations of all S-wave vector quarkonium states in LHC proton-proton collisions with the CMS detector. Heavy quarkonium states constitute an ideal laboratory to study non-perturbative effects of quantum chromodynamics and to understand how quarks bind into hadrons. The experimental results are interpreted through an original phenomenological approach, which leads to a coherent picture of quarkonium production cross sections and polarizations within a simple model, dominated by one single color-octet production mechanism. These findings provide new insights into the dynamics of heavy quarkonium production at the LHC, an important step towards a satisfactory understanding of hadron formation within the standard model of particle physics. |
You may like...
|