![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Atomic & molecular physics
This book provides a comprehensive treatment of intensity dependent particle beam instabilities in accelerating rings. Written for researchers, the material is also suitable for use as a textbook in an advanced graduate course for students studying accelerator physics.The presentation starts with a brief review of the basic concept of wake potentials and coupling impedances in the vacuum chamber followed by a discussion on static and dynamic solutions of their effects on the particle beams. Special emphasis is placed separately on proton and electron machines. Other special topics of interest covered include Landau damping, Balakin-Novokhatsky-Smirnov damping, Sacherer's integral equations, Landau cavity, saw-tooth instability, Robinson stability criteria, beam loading, transition crossing, two-stream instabilities, and collective instability issues of isochronous rings. After the formulation of an instability, readers are provided a thorough description of one or more experimental observations together with a discussion of the cures for the instability.Although the book is theory oriented, the use of mathematics has been minimized. The presentation is intended to be rigorous and self-contained with nearly all the formulas and equations derived.
Benjamin Bederson contributed to the world of physics in many
areas: in atomic physics, where he achieved renown by his
scattering and polarizability experiments, as the Editor-in-Chief
for the American Physical Society, where he saw the introduction of
electronic publishing and a remarkable growth of the APS journals,
with ever increasing world-wide contributions to these highly
esteemed journals, and as the originator of a number of
international physics conferences in the fields of atomic and
collision physics, which are continuing to this day. Bederson was
also a great teacher and university administrator.
Part I is devoted to Niels Bohr's mission to promote an "open
world" between nations, that is, full sharing of information in the
scientific and technical, as well as in the cultural spheres the
scientific and technical, as well as in the cultural spheres. He
started his mission immediately upon escaping from Nazi-occupied
Denmark in the autumn of 1943, when he realized that the bomb was
on the way to becoming a reality. As he wrote in 1944, he
considered that the existence of the atomic bomb "would not only
seem to necessitate but should also, due to the urgency of mutual
confidence, facilitate" the realization of an open world. During
the Second World War, while being actively involved in the Allied
atomic bomb project, Bohr was able to obtain access to Prime
Minister Churchill and President Roosevelt to promote his view.
After the war he continued his confidential approaches to the
statesmen while publishing more generally oriented articles on the
issue.
This work addresses dynamical aspects of quantum criticality in two space dimensions. It probes two energy scales: the amplitude (Higgs) mode, which describes fluctuations of the order parameter amplitude in the broken symmetry phase and the dual vortex superfluid stiffness. The results demonstrate that the amplitude mode can be probed arbitrarily close to criticality in the universal line shape of the scalar susceptibility and the optical conductivity. The hallmark of quantum criticality is the emergence of softening energy scales near the phase transition. In addition, the author employs the charge-vortex duality to show that the capacitance of the Mott insulator near the superfluid to insulator phase transition serves as a probe for the dual vortex superfluid stiffness. The numerical methods employed are described in detail, in particular a worm algorithm for O(N) relativistic models and methods for numerical analytic continuation of quantum Monte Carlo data. The predictions obtained are particularly relevant to recent experiments in cold atomic systems and disordered superconductors.
This book is a comprehensive source of the fundamentals, process parameters, instrumental components and applications of laser-induced breakdown spectroscopy (LIBS). The effect of multiple pulses on material ablation, plasma dynamics and plasma emission is presented. A heuristic plasma modeling allows to simulate complex experimental plasma spectra. These methods and findings form the basis for a variety of applications to perform quantitative multi-element analysis with LIBS. These application potentials of LIBS have really boosted in the last years ranging from bulk analysis of metallic alloys and non-conducting materials, via spatially resolved analysis and depth profiling covering measuring objects in all physical states: gaseous, liquid and solid. Dedicated chapters present LIBS investigations for these tasks with special emphasis on the methodical and instrumental concepts as well as the optimization strategies for a quantitative analysis. Requirements, concepts, design and characteristic features of LIBS instruments are described covering laboratory systems, inspections systems for in-line process control, mobile systems and remote systems. State-of-the-art industrial applications of LIBS systems are presented demonstrating the benefits of inline process control for improved process guiding and quality assurance purposes.
Cold atomic gases trapped and manipulated on atom chips allow the realization of seminal one-dimensional (1d) quantum many-body problems in an isolated and well controlled environment. In this context, this thesis presents an extensive experimental study of non-equilibrium dynamics in 1d Bose gases, with a focus on processes that go beyond simple dephasing dynamics. It reports on the observation of recurrences of coherence in the post-quench dynamics of a pair of 1d Bose gases and presents a detailed study of their decay. The latter represents the first observation of phonon-phonon scattering in these systems. Furthermore, the thesis investigates a novel cooling mechanism occurring in Bose gases subjected to a uniform loss of particles. Together, the results presented show a wide range of non-equilibrium phenomena occurring in 1d Bose gases and establish them as an ideal testbed for many-body physics beyond equilibrium.
The mechanism responsible for the generation of the mass of an particle has emerged as one of the most urging questions in fundamental physics. The effective-theory approach provides the theoretical basis for a model-independent description of the effects sensitive to this mechanism and their impact on observables. This book systematically develops this method, relating the predictions of different physics scenarios in a unified treatment. It also contains a detailed discussion of the processes that can actually be observed, the status of calculations, methods to isolate the interesting signals, and expectations for the sensitivity of future collider experiments. The systematic bottom-up approach provides the appropriate framework for interpreting measurements that will be performed to better understand the physics of mass generation in the universe. No knowledge of quantum field theory is required other than familiarity with effective Lagrangians and Feynmann diagrams. This book will be useful for both theorists and experimentalists who are interested in the phenomenology of electroweak interactions.
This thesis presents a theoretical investigation into the creation and exploitation of quantum correlations and entanglement among ultracold atoms. Specifically, it focuses on these non-classical effects in two contexts: (i) tests of local realism with massive particles, e.g., violations of a Bell inequality and the EPR paradox, and (ii) realization of quantum technology by exploitation of entanglement, for example quantum-enhanced metrology. In particular, the work presented in this thesis emphasizes the possibility of demonstrating and characterizing entanglement in realistic experiments, beyond the simple "toy-models" often discussed in the literature. The importance and relevance of this thesis are reflected in a spate of recent publications regarding experimental demonstrations of the atomic Hong-Ou-Mandel effect, observation of EPR entanglement with massive particles and a demonstration of an atomic SU(1,1) interferometer. With a separate chapter on each of these systems, this thesis is at the forefront of current research in ultracold atomic physics.
This thesis investigates ultracold molecules as a resource for novel quantum many-body physics, in particular by utilizing their rich internal structure and strong, long-range dipole-dipole interactions. In addition, numerical methods based on matrix product states are analyzed in detail, and general algorithms for investigating the static and dynamic properties of essentially arbitrary one-dimensional quantum many-body systems are put forth. Finally, this thesis covers open-source implementations of matrix product state algorithms, as well as educational material designed to aid in the use of understanding such methods.
This textbook introduces the molecular and quantum chemistry needed to understand the physical properties of molecules and their chemical bonds. It follows the authors' earlier textbook "The Physics of Atoms and Quanta" and presents both experimental and theoretical fundamentals for students in physics and physical and theoretical chemistry. The new edition treats new developments in areas such as high-resolution two-photon spectroscopy, ultrashort pulse spectroscopy, photoelectron spectroscopy, optical investigation of single molecules in condensed phase, electroluminescence, and light-emitting diodes.
This book elaborates on the acceleration of charged particles with ultrafast terahertz electromagnetic radiation. It paves the way for new, and improves many aspects of current, accelerator applications. These include providing shorter electron bunches for ultrafast time-resolved pump-probe spectroscopy, enabling complex longitudinal profiles to be imparted onto charged particle bunches and significantly improving the ability to synchronise an accelerator to an external laser. The author has developed new sources of terahertz radiation with attractive properties for accelerator-based applications. These include a radially biased large-area photoconductive antenna (PCA) that provided the largest longitudinally polarised terahertz electric field component ever measured from a PCA. This radially biased PCA was used in conjunction with an energy recovery linear accelerator for electron acceleration experiments at the Daresbury Laboratory. To achieve even higher longitudinally polarised terahertz electric field strengths, and to be able to temporally tune the terahertz radiation, the author investigated generation within non-linear optical crystals. He developed a novel generation scheme employing a matched pair of polarity inverted magnesium-oxide doped stoichiometric lithium niobate crystals, which made it possible to generate longitudinally polarised single-cycle terahertz radiation with an electric field amplitude an order of magnitude larger than existing sources.
Relativity plays an important role in atomic nuclei, and, since the early 1970s, there has been increasing interest in, and literature on, the nucleus as a relativistic system. In fact, the relativistic treatment provides a powerful method to describe nuclear structure and reactions. It is thus an ideal time to collect and review the important landmarks in this book. Directed to advanced students and researchers, it explains both the underlying relativistic theory and compares predictions with actual experiments.
This book reviews the HL-LHC experiments and the fourth-generation photon science experiments, discussing the latest radiation hardening techniques, optimization of device & process parameters using TCAD simulation tools, and the experimental characterization required to develop rad-hard Si detectors for x-ray induced surface damage and bulk damage by hadronic irradiation. Consisting of eleven chapters, it introduces various types of strip and pixel detector designs for the current upgrade, radiation, and dynamic range requirement of the experiments, and presents an overview of radiation detectors, especially Si detectors. It also describes the design of pixel detectors, experiments and characterization of Si detectors. The book is intended for researchers and master's level students with an understanding of radiation detector physics. It provides a concept that uses TCAD simulation to optimize the electrical performance of the devices used in the harsh radiation environment of the colliders and at XFEL.
How much knowledge can we gain about a physical system and to
what degree can we control it? In quantum optical systems, such as
ion traps or neutral atoms in cavities, single particles and their
correlations can now be probed in a way that is fundamentally
limited only by the laws of quantum mechanics. In contrast, quantum
many-body systems pose entirely new challenges due to the enormous
number of microscopic parameters and their small length- and short
time-scales.
Leading scientists discuss the most recent physical and experimental results in the physics of Bose-Einstein condensate theory, the theory of nonlinear lattices (including quantum and nonlinear lattices), and nonlinear optics and photonics. Classical and quantum aspects of the dynamics of nonlinear waves are considered. The contributions focus on the Gross-Pitaevskii equation and on the quantum nonlinear Schr dinger equation. Recent experimental results on atomic condensates and hydrogen bonded systems are reviewed. Particular attention is given to nonlinear matter waves in periodic potential.
Neutron spin echo (NSE) spectroscopy is the highest energy resolution neutron scattering technique available for examining a large area (in time and space) in condensed matter physics. This broad dynamic and spatial range is extensively exploited in the study of a wide range of scientific problems ranging from the dynamics of glasses, polymer melts, complex fluids and microemulsions to the elementary excitations in superfluid 4He and to ferromagnets and spin glasses. This book reviews the current status and future prospects in NSE spectroscopy describing the method, latest instrumentation and also the use of NSE in fundamental, hard- and soft-matter science. It provides first-hand information for researchers working in the fields touched by NSE. In addition, young researchers, PhD students and graduates interested in the method will obtain a comprehensive overview and guidelines to implementing the NSE technique.
This volume contains papers based on the workshop "Energy and Information Transfer in Biological Systems: How Physics Could Enrich Biological Understanding," held in Italy in 2002. The meeting was a forum aimed at evaluating the potential and outlooks of a modern physics approach to understanding and describing biological processes, especially regarding the transition from the microscopic chemical scenario to the macroscopic functional configurations of living matter. In this frame some leading researchers presented and discussed several basic topics, such as the photon interaction with biological systems also from the viewpoint of photon information processes and of possible applications; the influence of electromagnetic fields on the self-organization of biosystems including the nonlinear mechanism for energy transfer and storage; and the influence of the structure of water on the properties of biological matter.
This book presents an in-depth discussion on molecular electronics in an easy-to-understand manner, aiming at chemists, computer scientists, surface scientists, physicists, and applied mathematicians. Lighter overviews are provided for the science-minded layperson and the high tech entrepreneur in this nanoscale science. The author has included a detailed synthetic chemistry treasure chest, protocols of self-assembling routes for bottom-up fabrication atop silicon platforms, representative currentvoltage and memory readouts from molecular devices, and overviews of present architectural and mathematical approaches to programming molecular computing machines. The investment and commercial insertion landscape is painted along with a "Who's Who" in the molecular electronics business space. Advice and forewarnings are provided in a practical yet witty manner for the aspiring academic corporate founder and the business CEO wannabe seeking to establish a high tech company while wading through the idiosyncratic morass of university personalities and university-owned intellectual property.
In this book the characteristics of synchrotron radiation, including insertion device radiation, are described and derived from first principles. The reader is first introduced to the subject in an intuitive way in order to gain familiarity with the underlying physical processes. A rigorous mathematical derivation of the theory then follows. Since the characteristics of synchrotron radiation are intimately connected with the parameters of the electron beam and its accelerator, a basic introduction to electron beam dynamics and accelerator design is included. The book is aimed at graduate students and scientists working with synchrotron radiation and is designed to serve both as a textbook and as a reference work. It includes numerous exercises, some with solutions.
Simulation of materials at the atomistic level is an important tool in studying microscopic structures and processes. The atomic interactions necessary for the simulations are correctly described by Quantum Mechanics, but the size of systems and the length of processes that can be modelled are still limited. The framework of Gaussian Approximation Potentials that is developed in this thesis allows us to generate interatomic potentials automatically, based on quantum mechanical data. The resulting potentials offer several orders of magnitude faster computations, while maintaining quantum mechanical accuracy. The method has already been successfully applied for semiconductors and metals.
Crystal growth and nucleation are treated in the specialized literature in different ways depending on the discipline in question (physics, physical chemistry, chemical engineering) and on the theoretical approaches (atomistic vs continuum approach as regards crystal growth, phase vs chemical concept as regards nucleation). This book relates the different approaches to one another, giving preference to atomistic treatments by the methods of statistical thermodynamics and chemical kinetics. This unified approach also facilitates an understanding of some related phenomena of surface physics, such as adsorption, wetting etc. The book allows research novices and graduate students to get an insight into the physics of the phenomena and to interpret some of the experimental results.
This book deals with the acceleration and storage of polarized proton beams in cyclic accelerators. Basic equations of spin motion are reviewed, the invariant spin field is introduced, and an adiabatic invariant of spin motion is derived. These modern concepts contribute to the optimization of high energy accelerators for polarized beams. It also allows the analysis of high order depolarizing resonances. Several numerical methods for computing the invariant spin field are presented and results are displayed in numerous illustrations. The reader will gain a much clearer view of spin dynamics at high energy than has hitherto been available.
Not only was E.P. Wigner one of the most active creators of 20th century physics, he was also always interested in expressing his opinion in philosophical, political or sociological matters. This volume of his collected works covers a wide selection of his essays about science and society, about himself and his colleagues. Annotated by J. Mehra, this volume will become an important source of reference for historians of science, and it will be pleasant reading for every physicist interested in forming ideas in modern physics. |
You may like...
Exploring Quantum Mechanics - A…
Victor Galitski, Boris Karnakov, …
Hardcover
R6,101
Discovery Miles 61 010
Jack Sabin, Scientist and Friend, Volume…
Jens Oddershede, Erkki J. Brandas
Hardcover
R5,223
Discovery Miles 52 230
|