![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Biophysics
This book brings together contributions from internationally renowned experts in the biochip field. The authors present not only their latest research work, but also discuss current trends in biochip technology. Specific topics range from microarray technology and its applications to lab-on-a-chip technology.
Proceedings of the NATO Advanced Study Institute on Basic Concepts and Applications of Scanning Tunneling Microscopy, Erice, Italy, April 17-29, 1989
Biomedical devices that contact with blood or tissue represent a wide range of products. Depending on their potential harm to a body, medical devices are categorized according to the degree, so their safety can be assured. All biomaterials are by definition designed to contact with a body for a certain period of time. The nature of the body contact, as well as the duration a material contacts with the body may initiate unwanted biological In comparison with invasive devices Oike catheters and medical responses. implants contact directly with tissue or with the circulating blood) non invasive devices (like wound-dressings and contact lenses contact with the skin, the sclera, and the mucosa or with open wounds) have a lesser risk of hurting a patient. When blood contacts with a foreign material, plasma proteins become absorpted to the surface within a few seconds. The reactions that follow, the so-called intrinsic pathway lead to the formation of fibrin and activation of platelets and white blood cells, result in blood clot formation."
Nonlinear dynamics has become an important field of research in recent years in many areas of the natural sciences. In particular, it has potential applications in biology and medicine; nonlinear data analysis has helped to detect the progress of cardiac disease, physiological disorders, for example episodes of epilepsy, and others. This book focuses on the current trends of research concerning the prediction of sudden cardiac death and the onset of epileptic seizures, using the nonlinear analysis based on ECG and EEG data. Topics covered include the analysis of cardiac models and neural models. The book is a collection of recent research papers by leading physicists, mathematicians, cardiologists and neurobiologists who are actively involved in using the concepts of nonlinear dynamics to explore the functional behaviours of heart and brain under normal and pathological conditions. This collection is intended for students in physics, mathematics and medical sciences, and researchers in interdisciplinary areas of physics and biology.
For anybody capable of an emotional response to it, any view of a developing organism should give birth to a feeling of amazement and even admiration, whether this development is seen directly, or in the form of a time lapse film, or even if mentally reconstructed from a series of static images. We ask ourselves how such seemingly primitive eggs or pieces of tissue, without any obvious intervention from outside, so regularly transform themselves into precisely constructed adult organisms. If we try to formulate what amazes us most of all about development, the answer will probably be that it is the internal capacity of developing organisms themselves to create new structures. How, then, can we satisfy our amazement in ways that are more or less reasonable, as well as scientifically valuable? This depends, first of all, on what position we choose to regard embryonic development as occupying among other structure creating processes, even including human activities. On the one hand, one might regard the development of organisms as a highly specialized class of processes, unique to themselves and alien to the general laws of nature, or at least not derivable from them and more akin to the deliberate acts of our own human behaviour. In that case our task would become reduced to a search for some specific 'instructions' for each next member of such a class. Whether in an overt or hidden form, some such ideology seems to dominate in present day developmental biology.
Rhythms of the heart and of the nervous and endocrine system, breathing, locomotory movements, sleep, circadian rhythms and tissue cell cycles are major elements of the temporal order of man. The dynamics of these systems are characterized by changes in the properties of an oscillator, transitions from oscillatory states into chaotic or stationary states, and vice versa, coupling or uncoupling between two or more oscillators. Any deviation from the normal range to either more or less ordered states may be defined as temporal disorder. Pathological changes of temporal organization, such as tremor, epileptic seizures, Cheyne-Stokes breathing, cardiac arrhythmicities and circadian desynchronization, may be caused by small changes in the order (control) parameters. One major aspect of the symposium was the analysis of characteristic features of these temporal control systems, including nonlinear dynamics of interactions, positive, negative and mixed feedback systems, temporal delays, and their mathematical description and modelling. The ultimate goal is a better understanding of the principles of temporal organization in order to treat periodic diseases or other perturbations of "normal" dynamics in human oscillatory systems.
This book will serve as an ideal guide to the relatively new and complex field of bioelectromagnetics for students and researchers interested in the interaction of biological systems and electromagnetic fields. Coverage details: (1) biological responses of human and animals, both in vivo and in vitro methodologies, to magnetic and/or electromagnetic field exposure, (2) characteristics of effective fields, (3) hypotheses to explain possible mechanisms of interaction between the fields and cells, and (4) induced current in ELF and induced heat in RF fields as key interaction mechanisms.
Thermoluminescence (TL) is a well-established technique widely used in do- metric and dating applications. Although several excellent reference books exist which document both the t- oretical and experimental aspects of TL, there is a general lack of books that deal withspeci?cnumericalandpracticalaspectsofanalyzingTLdata. Manytimesthe practicaldetailsofanalyzingnumericalTLglowcurvesandofapplyingtheoretical models are dif?cult to ?nd in the published literature. The purpose of this book is to provide a practical guide for both established researchers and for new graduate students entering the ?eld of TL and is intended to be used in conjunction with and as a practical supplement of standard textbooks in the ?eld. Chapter1laysthemathematicalgroundworkforsubsequentchaptersbyprese- ingthefundamentalmathematicalexpressionsmostcommonlyusedforanalyzing experimental TL data. Chapter2presentscomprehensiveexamplesofTLdataanalysisforglowcurves following ?rst-, second-, and general-order kinetics. Detailed analysis of num- ical data is presented by using a variety of methods found in the TL literature, with particular emphasis in the practical aspects and pitfalls that researchers may encounter. Special emphasis is placed on the need to use several different me- ods to analyze the same TL data, as well as on the necessity to analyze glow curves obtained under different experimental conditions. Unfortunately, the lit- ature contains many published papers that claim a speci?c kinetic order for a TL peak in a dosimetric material, based only on a peak shape analysis. It is hoped that the detailed examples provided in Chapter 2 will encourage more comprehensive studies of TL properties of materials, based on the simultaneous use of several different methods of analysis.
This book is formulated from a number of presentations made at a one-day workshop on the subject of Photon Migration in Tissues. The meeting was held in Philadelphia at the University of Pennsylvania, April, 1988. The workshop was an impromptu effort to bring together scientists to discuss photon migration in animal tissues and appropriate models. The rapid emergence of the ideas of Townes and Schalow in their invention of the then called maser, now laser opened up completely unexpected possibilities for biomedical research. Timing of rapid biochemical reaction, identification of unstable intermediates, spectroscopy of short lived fluorescent states were all goals to be expected and achieved. At the same time continuous light spectroscopy of tissue slices and of the myocardium, and eventually of the brain have the to the the neonate emerged over years. Shifting red end of spectrum, Butler and Norris clearly showed how transparent plant materials and the human hand could be illuminated in this region and Jobsis applied their idea to the neonate brain using a multiwavelength technique.
This book evolved from a graduate course on applications of statistical thermody- namics to biochemical systems. Most of the published papers and books on this subject used in the course were written by experimentalists who adopted the phenomenological approach to describe and interpret their results. Two outstanding papers that impressed me deeply were the c1assical papers by Monod, Changeux, and Jacob (1963) and Monod, Wyman, and Changeux (1965), where the allosteric model for regulatory enzymes was introduced. Reading through them I feIt as if they were revealing one of the c1everest and most intricate tricks of nature to regulate biochemical processes. In 1985 I was glad to see T. L. HilI's volume entitled Cooperativity Theory in Biochemistry, Steady State and Equilibrium Systems. This was the fIrst book to systematically develop the molecular or statistical mechanical approach to binding systems. HilI demonstrated how and why the molecular approach is so advanta- geous relative to the prevalent phenomenological approach of that time. On page 58 he wrote the following (my italics): The naturalness of Gibbs' grand partition function for binding problems in biology is evidenced by the rediscovery of what is essentially the grand partition function for this particular type of problem by various physical biochentists, including E. Q. Adams, G.
This book surveys a wide variety of mathematical models of diffusion in the ecological context. It is written with the primary intent of providing scientists, particularly physicists but also biologists, with some background in the mathematics and physics of diffusion, and shows how they can be applied to ecological problems. The secondary intent is to provide a specialized textbook for graduate students who are interested in mathematical ecology. The reader is assumed to have a basic knowledge of probability and differential equations. Each chapter in this new edition has been substantially updated by appropriate leading researchers in the field, and contains much new material covering developments in the field in the last 20 years.
Biophysics represents perhaps one of the best examples of interdisciplinary research areas, where concepts and methods from disciplines such as physics, biology, b- chemistry, colloid chemistry, and physiology are integrated. It is by no means a new ?eld of study and has actually been around, initially as quantitative physiology and partly as colloid science, for over a hundred years. For a long time, biophysics has been taught and practiced as a research discipline mostly in medical schools and life sciences departments, and excellent biophysics textbooks have been published that are targeted at a biologically literate audience. With a few exceptions, it is only relatively recently that biophysics has started to be recognized as a physical science and integrated into physics departments' curr- ula, sometimes under the new name of biological physics. In this period of cryst- lization and possible rede?nition of biophysics, there still exists some uncertainty as to what biophysics might actually represent. A particular tendency among phy- cists is to associate biophysics research with the development of powerful new te- niques that should eventually be used not by physicists to study physical processes in living matter, but by biologists in their biological investigations. There is value in that judgment, and excellent books have been published that introduce the int- ested reader to the use of physical principles for the development of new methods of investigation in life sciences.
Writing or editing a book on a very topical field of science is always a great challenge, since by the time the book is published some of the newest and latest findings might be obsolete compared with results reported in the most current issues of various high-level journals. Nevertheless, stimulating good books describe complicated systems and int- relationships and provide a broad spectrum of material for talented researchers who may find new inspiration from a joint presentation of correlated data. Of course, an editor cannot rank his own book. However, in this case, the contrib- ing authors have high scientific standards and well-known achievements which speak for themselves. Transmembrane signaling has many different forms and biochemical and biophysical details. However, the final outcome of transmembrane signaling at the cellular level elucidates some cellular functions, which are at the center of se- defense, alimentation, escape reactions, etc. Transmembrane signaling can be studied best in the immune system, in particular in lymphocytes, the main cel- lar carriers of immune defense. The different chapters are independent studies, written by well-known experts in their particular fields. Some chapters include the authors' very recent data, generalized, on the one hand, to provide und- standable material for those who are interested in the field but not experts. On the other hand, the current data and novel efforts to unify biochemical and bioph- ical events in a physiological description provide interesting reading for experts as w
Hearing From Sensory Processing to Perception presents the papers of the latest International Symposium on Hearing, a meeting held every three years focusing on psychoacoustics and the research of the physiological mechanisms underlying auditory perception. The proceedings provide an up-to-date report on the status of the field of research into hearing and auditory functions. The 59 chapters treat topics such as: the physiological representation of temporal and spectral stimulus properties as a basis for the perception of modulation patterns, pitch and signal intensity; spatial hearing and the physiological mechanisms of binaural processing in mammals; integration of the different stimulus features into auditory scene analysis; physiological mechanisms related to the formation of auditory objects; speech perception; and limitations of auditory perception resulting from hearing disorders."
This text presents a general introduction to soft tissue biomechanics. One of its primary goals is to introduce basic analytical, experimental and computational methods. In doing so, it enables readers to gain a relatively complete understanding of the biomechanics of the heart and vasculature.
This collection of lectures and tutorial reviews focuses on the common computational approaches in use to unravel the static and dynamical behaviour of complex physical systems at the interface of physics, chemistry and biology. Prominent consideration is given to rugged free-energy landscapes. The authors aim to provide a common basis and technical language for the (computational) technology transfer between the fields and systems considered.
Signi?cant progress has been made in the development of neural prostheses for restoration of human functions and improvement of the quality of life. Biomedical engineers and neuroscientists around the world are working to improve the design and performance of existing devices and to develop novel devices for arti?cial vision, arti?cial limbs, and brain-machine interfaces. This book, Implantable Neural Prostheses 2: Techniques and Engineering Approaches, is part two of a two-volume sequence that describes state-of-the-art advances in techniques associated with implantable neural prosthetic devices. The techniques covered include biocompatibility and biostability, hermetic packaging, electrochemical techniques for neural stimulation applications, novel electrode materials and testing, thin-?lm ?exible microelectrode arrays, in situ char- terization of microelectrode arrays, chip-size thin-?lm device encapsulation, microchip-embedded capacitors and microelectronics for recording, stimulation, and wireless telemetry. The design process in the development of medical devices is also discussed. Advances in biomedical engineering, microfabrication technology, and neu- science have led to improved medical-device designs and novel functions. However, many challenges remain. This book focuses on the engineering approaches, R&D advances, and technical challenges of medical implants from an engineering p- spective. We are grateful to leading researchers from academic institutes, national laboratories, as well as design engineers and professionals from the medical device industry who have contributed to the book. Part one of this series covers designs of implantable neural prosthetic devices and their clinical applications.
0 e From the reviews of the German edition: "NMR: readable yet professional... Through this book the reader with a scientific background becomes familiar with all important NMR phenomena, methods and conceptions... The great amount of carefully drawn figures and skillfully selected biologically relevant spectra and figures are an decisive bridge to the ... aim, to convey the NMR basics without mathematics. Besides biologists and physicians the book can be highly recommended to physicists and chemists..." #"Nachrichten a. d. Chemie, Technik u. Laboratorien"#1 "An extraordinary NMR textbook ... The authors succeeded in presenting the subject vividly. This book is clearly set out and easy to follow at a glance, and its numerous figures are extremely well done." #"Labo"#2
The Springer Handbook of Auditory Research presents a series of compreh- sive and synthetic reviews of the fundamental topics in modern auditory - search. The volumes are aimed at all individuals with interests in hearing research including advanced graduate students, postdoctoral researchers, and clinical investigators. The volumes are intended to introduce new investigators to important aspects of hearing science and to help established investigators to better understand the fundamental theories and data in ?elds of hearing that they may not normally follow closely. Each volume presents a particular topic comprehensively, and each serves as a synthetic overview and guide to the literature. As such, the chapters present neither exhaustive data reviews nor original research that has not yet appeared in peer-reviewed journals. The volumes focus on topics that have developed a solid data and conceptual foundation rather than on those for which a literature is only beginning to develop. New research areas will be covered on a timely basis in the series as they begin to mature.
This work systematically investigates a large number of oscillatory network configurations that are able to describe many real systems such as electric power grids, lasers or even the heart muscle, to name but a few. The book is conceived as an introduction to the field for graduate students in physics and applied mathematics as well as being a compendium for researchers from any field of application interested in quantitative models.
This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable increase in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of radionuclides for diagnosis and therapy has origins dating back almost to the discovery of natural radioactivity itself, radionuclide therapy and, in particular, targeted radionuclide therapy has only recently emerged as a promising approach for therapy of cancer and, to a lesser extent, other diseases. As effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. The different chapters discuss the basic principles and various steps required for obtaining quantitatively accurate data from nuclear medicine images including data collection methods and algorithms used to correct them for physical degrading factors (e.g. collimator response, attenuation, scatter, partial volume effect), and image reconstruction algorithms (analytic, iterative) as well as image processing and analysis techniques as their clinical and research applications in neurology, cardiology and oncology. Some algorithms are described and illustrated with some useful features and clinical applications. Other potential applications of quantitative image analysis such as image-guided radiation therapy are also discussed.
"Chemical physics is a science of the physical foundations of chemical transformations" (N. N. Semenov). The main objective of chemical physics is to disclose the detailed mechanism of chemical reactions and to learn to control these processes. The physico-chemical approach hinges upon the extensive application of methods of molecular physics and chemical kinetics. Based originally on simple gas-phase processes, chemical physics gradually extended its sphere of interest to liquid-phase reactions and to processes taking place in solids, including polymers. At present, we witness the fact that the ideas and methods of this science penetrate deeper and deeper into modern molecular biology, including enzyme catalysis. This monograph treats, from the standpoint of modern chemical physics, the principal general and individual features of the structure and mechanism of action of various classes of oxidation-reduction (redox) metalloenzymes. There are several reasons for which this branch of science attracts the attention of specialists in various fields - from biologists and those working in medicine to chemists and theoretical physicists. First of all, is the enormous biological and biochemical importance of processes catalyzed by metalloenzymes. These include biological ox idation with oxygen, oxidative and photo-phosphorylation, atmospheric nitrogen fixation, assimilation of nitrates and sulphites, phototransport of electrons, hydrogen evolution and hydrogenation and photo-oxida tion of water, which is far from a complete list of such processes."
Less than twenty years ago photolithography and medicine were total strangers to one another. They had not yet met, and not even looking each other up in the classi?eds. And then, nucleic acid chips, micro?uidics and microarrays entered the scene, and rapidly these strangers became indispensable partners in biomedicine. Asrecentlyastenyearsagothenotionofapplyingnanotechnologytothe?ghtagainstd- ease was dominantly the province of the ?ction writers. Thoughts of nanoparticle-vehicled deliveryoftherapeuticalstodiseasedsiteswereanexerciseinscienti?csolitude,andgrounds for questioning one's ability to think "like an established scientist". And today we have nanoparticulate paclitaxel as the prime option against metastatic breast cancer, proteomic pro?lingdiagnostictoolsbasedontargetsurfacenanotexturing,nanoparticlecontrastagents for all radiological modalities, nanotechnologies embedded in high-distribution laboratory equipment, and no less than 152 novel nanomedical entities in the regulatory pipeline in the US alone. Thisisatransformingimpact,byanymeasure,withclearevidenceoffurtheracceleration, supported by very vigorous investments by the public and private sectors throughout the world. Even joining the dots in a most conservative, linear fashion, it is easy to envision scenarios of personalized medicine such as the following: patient-speci?c prevention supplanting gross, faceless intervention strategies; early detection protocols identifying signs of developing disease at the time when the disease is most easily subdued; personally tailored intervention strategies that are so routinely and inexpensively realized, that access to them can be secured by everyone; technologies allowing for long lives in the company of disease, as good neighbors, without impairment of the quality of life itself.
M-health can be defined as the emerging mobile communications and network technologies for healthcare systems.' This book paves the path toward understanding the future of m-health technologies and services and also introducing the impact of mobility on existing e-health and commercial telemedical systems. M-Health: Emerging Mobile Health Systems presents a new and forward-looking source of information that explores the present and future trends in the applications of current and emerging wireless communication and network technologies for different healthcare scenaria. It also provides a discovery path on the synergies between the 2.5G and 3G systems and other relevant computing and information technologies and how they prescribe the way for the next generation of m-health services. The book contains 47 chapters, arranged in five thematic sections: Introduction to Mobile M-health Systems, Smart Mobile Applications for Health Professionals, Signal, Image, and Video Compression for M-health Applications, Emergency Health Care Systems and Services, Echography Systems and Services, and Remote and Home Monitoring. This book is intended for all those working in the field of information technologies in biomedicine, as well as for people working in future applications of wireless communications and wireless telemedical systems. It provides different levels of material to researchers, computing engineers, and medical practitioners interested in emerging e-health systems. This book will be a useful reference for all the readers in this important and growing field of research, and will contribute to the roadmap of future m-health systems and improve the development of effective healthcare delivery systems." |
You may like...
DNA Damage and Double Strand Breaks Part…
Fuyuhiko Tamanoi, Kenichi Yoshikawa
Hardcover
R3,440
Discovery Miles 34 400
Handbook of Hormones - Comparative…
Hironori Ando, Kazuyoshi Ukena, …
Paperback
R5,129
Discovery Miles 51 290
|