![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Chemical engineering
Particle Technology and Applications presents the theoretical and technological background of particle science and explores up-to-date applications of particle technologies in the chemical, petrochemical, energy, mechanical, and materials industries. It looks at the importance of particle science and technology in the development of efficient chemical processes and novel functional materials. With peer-reviewed chapters written by a select group of academic and industry experts, the book provides examples of particle technology and its advanced industrial applications. It includes the necessary scientific background of particle technology as well as relevant technological details of the application areas. This helps readers grasp specific details of the applied technology, since the advanced particle technology can directly or synergistically have an impact on outcomes, such as the development of a targeted functional material, enhancement of existing processing techniques, and modification of the properties of existing materials. Presenting a consistent scientific treatment of all topics, this comprehensive yet accessible book covers a variety of practical applications and relevant theoretical foundation of particle science and technology. It will help readers tackle new challenges in process and product development and create new methodologies in the clean technology sector.
Chemicals from Biomass: Integrating Bioprocesses into Chemical Production Complexes for Sustainable Development helps engineers optimize the development of new chemical and polymer plants that use renewable resources to replace the output of goods and services from existing plants. It also discusses the conversion of those existing plants into facilities that are based on renewable resources that may require nonrenewable resource supplements. Relying on extensive reviews of biomass as feedstock and the production of chemicals from biomass, this book identifies and illustrates the design of new chemical processes (bioprocesses) that use renewable feedstock (biomass) as raw materials. The authors show how these new bioprocesses can be integrated into the existing plant in a chemical production complex to obtain the best combination of energy-efficient and environmentally acceptable facilities. This presented methodology is an essential component of sustainable development, and these steps are essential to achieving a sustainable chemical industry. The authors evaluate potential bioprocesses based on a conceptual design of biomass-based chemical production, and they use Aspen HYSYS (R) and Aspen ICARUS (R) to perform simulations and economic evaluations of these processes. The book outlines detailed process designs created for seven bioprocesses that use biomass and carbon dioxide as feedstock to produce a range of chemicals and monomers. These include fermentation, transesterification, anaerobic digestion, gasification, and algae oil production. These process designs, and associated simulation codes, can be downloaded for modification, as needed. The methodology presented in this book can be used to evaluate energy efficiency, cost, sustainability, and environmental acceptability of plants and new products. Based on the results of that analysis, the methodology can be applied to other chemical complexes for new bioprocesses, reduced emissions, and energy savings.
Most available books in chemical engineering mainly pertain to continuous processes, with batch distillation relegated to a small section. Filling this void in the chemical engineering literature, Batch Distillation: Simulation, Optimal Design, and Control, Second Edition helps readers gain a solid, hands-on background in batch processing. The second edition of this bestseller explores numerous new developments in batch distillation that have emerged since the publication of the first edition. New to the Second Edition Special sections on complex column configurations and azeotropic, extractive, and reactive distillation A chapter on various kinds of uncertainties in batch distillation A chapter covering software packages for batch distillation simulation, design, optimization, and control Separate chapters on complex columns and complex systems Up-to-date references and coverage of recent research articles This edition continues to explain how to effectively design, synthesize, and make operations decisions related to batch processes. Through careful treatments of uncertainty analysis, optimization, and optimal control methods, the author gives readers the necessary tools for making the best decisions in practice. While primarily designed for a graduate course in batch distillation, the text can also be used in undergraduate chemical engineering courses. In addition, researchers and academics faced with batch distillation research problems and practicing chemical engineers tackling problems in actual day-to-day operations will find the book to be a useful reference source.
Optimization is now essential in the design, planning and operation of chemical and related processes. Although process optimization for multiple objectives was studied in the 1970s and 1980s, it has attracted active research in the last 15 years, spurred by the new and effective techniques for multi-objective optimization (MOO). To capture this renewed interest, this monograph presents recent research in MOO techniques and applications in chemical engineering.Following a brief introduction and review of MOO applications in chemical engineering since 2000, the book presents selected MOO techniques and many chemical engineering applications in detail. In this second edition, several chapters from the first edition have been updated, one chapter is completely revised and three new chapters have been added. One of the new chapters describes three MS Excel programs useful for MOO of application problems. All the chapters will be of interest to researchers in MOO and/or chemical engineering. Several exercises are included at the end of many chapters, for use by both practicing engineers and students.
Dieses Buch basiert auf grundlegenden Techniken und jungsten industriellen Erfahrungen und eroertert die zahlreichen Entwicklungen bei der Prozessintensivierung und -integration. Es konzentriert sich auf die Steigerung der Nachhaltigkeit uber verschiedene ubergreifende Themen wie nachhaltige Fertigung, energiesparende Technologien sowie Techniken zur Ressourcenschonung und Vermeidung von Umweltverschmutzung. Process Intensification and Integration for Sustainable Design behandelt: Schiefergas als Option fur die Herstellung von Chemikalien und Herausforderungen fur die Prozessintensivierung; das Design und die technooekonomische Analyse von Trenneinheiten zur Bewaltigung der Variabilitat der Rohstoffe bei der Schiefergasbehandlung; RO-PRO Entsalzung; und technooekonomische und umweltbezogene Bewertung ultradunner Polysulfonmembranen fur die sauerstoffangereicherte Verbrennung. Als nachstes wird die Prozessintensivierung membranbasierter Systeme fur Wasser-, Energie- und Umweltanwendungen untersucht, sowie das Design einer intern warmeintegrierten Destillationskolonne (HIDiC); und grafische Analyse und Integration von Warmetauschernetzen mit Warmepumpen. Die Zersetzung und Implementierung einer grossflachigen Warmeintegration zwischen Anlagen sowie die Synthese von Kraft-Warme-Kopplungsnetzen (CHAMENs) mit erneuerbaren Energien werden behandelt. Das Buch behandelt auch Optimierungsstrategien zur Integration und Intensivierung von Wohnkomplexen; eine Bewertung des nachhaltigen Prozesses zur Umwandlung von Biomasse; und mehr. * Deckt die vielen Fortschritte und AEnderungen bei der Intensivierung und Integration von Prozessen ab * Behandelt grundlegende Techniken und aktuelle industrielle Erfahrungen, um die Praktiker in ihren eigenen Prozessen anzuleiten * Bietet umfassende Diskussion zu Themen, die unter anderem fur die Prozessindustrie, Bioraffinerien und das Energiemanagement von Anlagen relevant sind * Bietet eine aufschlussreiche Analyse und Integration des Reaktor- und Warmetauschernetzwerks * Behandelt die Optimierung integrierter Wasser- und Multi-Regenerator-Membransysteme mit Multi-Kontaminationen Process Intensification and Integration for Sustainable Design ist ein ideales Buch fur Verfahrenstechniker, Chemieingenieure, Ingenieurwissenschaftler, Ingenieurburos und Chemiker.
Glycerol: The Renewable Platform Chemical provides a valuable overview of the glycerol market, including industrial applications and sustainable production of glycerol. Replacing previous works on the subject, this useful resource describes glycerol, also known as glycerine, and its chemical derivatives, especially the new bioglycerol-derived products. The monograph also discusses how the industrial use of glycerol as raw material for producing commodity chemicals depends on broader scope and lower cost of the catalytic process used to convert glycerol of varying purity grades into valued monomers. New chapters on glycerol polymers, the use of glycerol as antifreeze, and its sustainable production offer relevant information for researchers and professionals from academics and industry alike. The book features new processes, such as low cost and biocompatible glycerol polymers as a major alternative to the conventional polymers, with the first practical applications now emerging in the biomedical and patient care markets. The book offers both a source of inspiration for new projects and a reliable source of information on how glycerol is replacing petrochemicals in many real world applications.
Although one of the oldest microbial technologies used in food processing, solid-state fermentation (SSF) had, until recently, fallen out of favor. However, based on a series of established mathematical models, new design concepts for SSF bioreactors and process control strategies have been proposed, allowing SSF technology to reach new levels. Solid State Fermentation for Foods and Beverages covers these new technologies and their application to food and beverage production. The book systematically describes the production of solid-state fermented food and beverage in terms of the history and development of SSF technology and SSF foods, bio-reactor design, fermentation process, various substrate origins and sustainable development. It emphasizes Oriental traditional foods produced by SSF such as sufu, vinegar, soy sauce, Chinese distilled spirit, and rice wine. The authors address such engineering issues as mass and heat transfer and energy equation calculation of solid-state fermentation, dynamic modeling of solid-state fermentation, and process control of solid-state fermentation. Covering the latest developments and achievements in the field of SSF, the book provides a detailed introduction to various solid-state fermented foods and beverages, including product category, characteristics, functionalities, safety issues, and consumer perception. It explores real advantages of SSF processes and how their application at real scale for high quality production that is more and less costly.
The field of asymmetric catalysis is currently one of the hottest areas in chemistry. This unique book focuses on the mechanism of enantioselectivity in asymmetric catalysis, rather than asymmetric catalysis from the synthetic view. It describes reliable, experimentally and computationally supported mechanisms, and discusses the danger of so-called "plausible" or "accepted" mechanisms leading to wrong conclusions. It draws parallels to enzymatic catalysis in biochemistry, and examines in detail the physico-chemical aspects of enantioselective catalysis.
This book provides readers with the most current, accurate, and practical fluid mechanics related applications that the practicing BS level engineer needs today in the chemical and related industries, in addition to a fundamental understanding of these applications based upon sound fundamental basic scientific principles. The emphasis remains on problem solving, and the new edition includes many more examples.
Divided Solids Transport, part of the Industrial Equipment for Chemical Engineering set, discusses the transport of a divided solid between workshops in a factory, and from a factory to the external market. Numerical examples are given for almost all the devices involved, and the pneumatic and hydraulic transportation parameters are also calculated. This book includes discussions on the movement of a divided solid by a liquid or gaseous stream, the energy consumption for a given flow, and how transporters are affected by the density and flow behavior of the divided solid being handled. The author also provides methods needed for understanding the equipment used in applied thermodynamics in the hope of encouraging students and engineers to self build the programs they need. Chapters are complemented with appendices that provide additional information and associated references.
Colloid and Surface Chemistry is a subject of immense importance and implications both to our everyday life and numerous industrial sectors, ranging from coatings and materials to medicine and biotechnology. How do detergents really clean? (Why can t we just use water ?) Why is milk milky Why do we use eggs so often for making sauces ? Can we deliver drugs in better and controlled ways? Coating industries wish to manufacture improved coatings e.g. for providing corrosion resistance, which are also environmentally friendly i.e. less based on organic solvents and if possible exclusively on water. Food companies want to develop healthy, tasty but also long-lasting food products which appeal to the environmental authorities and the consumer. Detergent and enzyme companies are working to develop improved formulations which clean more persistent stains, at lower temperatures and amounts, to the benefit of both the environment and our pocket. Cosmetics is also big business! Creams, lotions and other personal care products are really just complex emulsions. All of the above can be explained by the principles and methods of colloid and surface chemistry. A course on this topic is truly valuable to chemists, chemical engineers, biologists, material and food scientists and many more.
Introduces the nature of ethical decision making as applied to engineering values and issues. Helps readers develop a detailed ethics toolkit that identifies options and solutions and allows them to monitor and adjust as necessary. Features topics such as safety, sustainability, bioethics, diversity and equality, information technology and AI, as well as critical areas often overlooked in engineering texts, such as mentoring, advertising (for consulting firms), engineering sales, and much more Includes more than 50 case studies to illustrate a variety of scenarios. Offers an international perspective with codes of ethics from around the world, including Saudi Arabia, India, New Zealand, Chile, and Japan. Adds further cases and samples for discussion and a summary of key ideas.
Biologically active natural products and their substructures have long been valuable starting points for medicinal chemistry and drug discovery. This new volume explores biologically active natural products and their use in microbial technologies and as phyto-pharmaceuticals in drug development. It presents detailed scientific principles and recent research on applications of nanotechnology in diagnostics and drug delivery. Topics include pharmacotherapeutically active proteins and peptides; the biotechnological potential of hydrogen-oxidizing bacteria; synthesis and production; synthetic colorants, pigments, dyes, and lakes; and more. The use of various plants is discussed in several chapters, including Artemisia, Asteraceae, Abutilon indicum, Prosopis juliflora, Acacia arabica, Aloe barbadensis, Tabermontana divaricate Linn., among others. With the information presented in Biologically Active Natural Products: Microbial Technologies and Phyto-Pharmaceuticals in Drug Development, scientists, faculty, and graduate students will gain a unique insight into nanotechnology and natural pharmaceuticals today with practical implementation in various industrial sectors.
Recent Methodology in Chemical Sciences provides an eclectic survey of contemporary problems in experimental, theoretical, and applied chemistry. This book covers recent trends in research with the different domain of the chemical sciences. The chapters, written by knowledgeable researchers, provide different insights to the modern-day research in the domain of spectroscopy, plasma modification, and theoretical and computational analysis of chemical problems. It covers descriptions of experimental techniques, discussions on theoretical modeling, and much more.
This book covers all the basic and applied aspects of crystallization processes based on membrane technology. Synthesis and processing of membrane materials are discussed and reviewed, while mass/heat transport and control are treated in view of the non-reversible thermodynamic principles and statistical thermodynamics. Engineering process design and crystalline materials products properties, and also the relation to other traditional crystallization formats, are analyzed. Advantages, limitations, and future developments are also included in the content, with special emphasis on new fields of applications like microfluidic configurations, controlled proteins (also membrane proteins) crystallization, organic semiconductors single crystals production, and optical materials.
There is hardly a technical library in the world in which the volumes of the Chemical Formulary (Volumes 1-34) do not occupy a prominent place. It does not duplicate any of the formulas included in previous volumes, but lists a wide array of modern and salable products from all branches of the chemical industries. An excellent reference for formulation problems. - CONTENTS - I. Introduction - II. Adhesives - III. Beverages and Food - IV. Cosmetics - V. Coatings - VI. Detergents and Disinfectants - VII. Drugs - VIII. Polishes, Abrasives - IX. Miscellaneous - Appendix - Trademark Chemicals - Trademark Chemicals Suppliers - Index - PREFACE - Chemistry, as taught in our schools and colleges, concerns chiefly synthesis, analysis, and engineering-and properly so. It is part of the right foundation for the education of the chemist. Many a chemist entering an Industry soon finds that most of the products manufactured by his concern are not synthetic or definite complex compounds, but are mixtures, blends, or highly complex compounds of which he knows little or nothing. The literature in this field, if any, may be meager, scattered, or obsolete. Even chemists with years of experience In one or more Industries spend conslderable time and effort in acquainting themselves with any new field which they may enter. Consulting chemists similarly have to solve problems brought to them from industries foreign to them. There was a definite need for an up-to-date compilation of formulae for chemical compounding and treatment. Since the fields to be covered are many and varied, an editorial board of chemists and engineers engaged in many industries was formed. Many publications, laboratories, manufacturing firms, and Individuals have been consulted to obtain the latest and best information. It is felt that the formulas given in this volume will save chemists and allied workers much time and effort.
When confronted with a problem in science, the way to proceed is not always obvious. The problem may seem intractable or there may be many possible solutions, with some better than others. Problem-Solving Exercises in Green and Sustainable Chemistry teaches students how to analyze and solve real-world problems that occur in an environmental context, and it encourages creativity in developing solutions to situations based on events that have actually taken place. The problems described in this book are relevant and stimulating in learning and understanding the principles of green and sustainable chemistry. They address various aspects of the field, including: Toxicity Waste generation and disposal Chemical accidents Energy efficiency New policy development The final chapter contains proposed solutions to the presented problems and provides commentaries and references to relevant literature. This book also prompts students to become more comfortable with the idea of multiple "correct" answers to problems. It emphasizes the reality that green chemistry is about making practical decisions and weighing multiple factors that are often conflicting, thus making it difficult or impossible to apply one perfect solution to a given situation. Problem-Solving Exercises in Green and Sustainable Chemistry prepares students to solve challenging problems, whether as green chemists, as architects designing energy-efficient buildings, or as environmentally-conscious citizens.
Focusing on the application of mathematics to chemical engineering, Applied Mathematical Methods for Chemical Engineers addresses the setup and verification of mathematical models using experimental or other independently derived data. The book provides an introduction to differential equations common to chemical engineering, followed by examples of first-order and linear second-order ordinary differential equations. Later chapters examine Sturm-Liouville problems, Fourier series, integrals, linear partial differential equations, regular perturbation, combination of variables, and numerical methods emphasizing the method of lines with MATLAB (R) programming examples. Fully revised and updated, this Third Edition: Includes additional examples related to process control, Bessel Functions, and contemporary areas such as drug delivery Introduces examples of variable coefficient Sturm-Liouville problems both in the regular and singular types Demonstrates the use of Euler and modified Euler methods alongside the Runge-Kutta order-four method Inserts more depth on specific applications such as nonhomogeneous cases of separation of variables Adds a section on special types of matrices such as upper- and lower-triangular matrices Presents a justification for Fourier-Bessel series in preference to a complicated proof Incorporates examples related to biomedical engineering applications Illustrates the use of the predictor-corrector method Expands the problem sets of numerous chapters Applied Mathematical Methods for Chemical Engineers, Third Edition uses worked examples to expose several mathematical methods that are essential to solving real-world process engineering problems.
Catalysis for Sustainability: Goals, Challenges, and Impacts explores the intersection between catalytic science and sustainable technologies as a means to addressing current economic, social, and environmental problems. These problems include harnessing alternative energy sources, pollution prevention and remediation, and the manufacturing of commodity products. The book describes the nature of catalysis regarding sustainability and presents challenges to accomplishing sustainability as well as the significance of proven or potential success. The contributors have backgrounds in academia and industry to create a more integrated picture of the issues involving sustainability and catalysis. Broad in scope, the book covers topics such as traditional metal-mediated catalysis, organocatalysis, biocatalysis, biomimicry, and heterogeneous catalysis. It includes chapters dedicated to specific research areas of catalysis as they pertain to their effectiveness, their economic and environmental benefits, and the challenges researchers face in actualizing solutions. It also contains a chapter on the application of life cycle analysis to catalytic processes, demonstrating the need to holistically consider the sustainable impacts of a process. The book can be read in a straightforward fashion or skimmed without forfeiting understanding of the narrative on the strategies and intentions of research and development. Throughout the book the requirements of sustainability are measured by the triple bottom line of environmental, economic, and social impacts. It highlights real-world implementations of catalytic processes in drug development, manufacturing, polymers, and energy. Catalysis for Sustainability: Goals, Challenges, and Impacts is a strong and versatile text. It provides an introduction to the field and the issues with which it is concerned, as well as a detailed and far-reaching discussion on current achievements and future progress.
Sustainable development is a globally recognized mandate and it includes green or environment-friendly manufacturing practices. Such practices orchestrate with the self-healing and self-replenishing capability of natural ecosystems. Green manufacturing encompasses synthesis, processing, fabrication, and process optimization, but also testing, performance evaluation and reliability. The book shall serve as a comprehensive and authoritative resource on sustainable manufacturing of ceramics, metals and their composites. It is designed to capture the diversity and unity of methods and approaches to materials processing, manufacturing, testing and evaluation across disciplines and length scales. Each chapter incorporates in-depth technical information without compromising the delicate link between factual data and fundamental concepts or between theory and practice. Green and sustainable materials processing and manufacturing is designed as a key enabler of sustainable development.
SAFETY AND HEALTH FOR ENGINEERS A comprehensive resource for making products, facilities, processes, and operations safe for workers, users, and the public Ensuring the health and safety of individuals in the workplace is vital on an interpersonal level but is also crucial to limiting the liability of companies in the event of an onsite injury. The Bureau of Labor Statistics reported over 4,700 fatal work injuries in the United States in 2020, most frequently in transportation-related incidents. The same year, approximately 2.7 million workplace injuries and illnesses were reported by private industry employers. According to the National Safety Council, the cost in lost wages, productivity, medical and administrative costs is close to 1.2 trillion dollars in the US alone. It is imperative--by law and ethics--for engineers and safety and health professionals to drive down these statistics by creating a safe workplace and safe products, as well as maintaining a safe environment. Safety and Health for Engineers is considered the gold standard for engineers in all specialties, teaching an understanding of many components necessary to achieve safe workplaces, products, facilities, and methods to secure safety for workers, users, and the public. Each chapter offers information relevant to help safety professionals and engineers in the achievement of the first canon of professional ethics: to protect the health, safety, and welfare of the public. The textbook examines the fundamentals of safety, legal aspects, hazard recognition and control, the human element, and techniques to manage safety decisions. In doing so, it covers the primary safety essentials necessary for certification examinations for practitioners. Readers of the fourth edition of Safety and Health for Engineers readers will also find: Updates to all chapters, informed by research and references gathered since the last publication The most up-to-date information on current policy, certifications, regulations, agency standards, and the impact of new technologies, such as wearable technology, automation in transportation, and artificial intelligence New international information, including U.S. and foreign standards agencies, professional societies, and other organizations worldwide Expanded sections with real-world applications, exercises, and 164 case studies An extensive list of references to help readers find more detail on chapter contents A solution manual available to qualified instructors Safety and Health for Engineers is an ideal textbook for courses in safety engineering around the world in undergraduate or graduate studies, or in professional development learning. It also is a useful reference for professionals in engineering, safety, health, and associated fields who are preparing for credentialing examinations in safety and health.
This second review volume is a follow-up to the book "Engineering of Chemical Complexity" that appeared in 2013. Co-edited by the Nobel laureate Gerhard Ertl, this book provides a broad perspective over the current research aimed at understanding, the design and control of complex chemical systems of various origins, on the scales ranging from single molecules and nano-phenomena to macroscopic chemical reactors. Self-organization behavior and emergence of coherent collective dynamics in reaction-diffusion systems, in active soft matter and biochemical networks are discussed. Special attention is paid to applications in cell biology, to molecular motors and microfluidics effects. The reviews, prepared by leading international experts from the EU, USA, Russia and Japan, together yield a fascinating picture of a rapidly developing research discipline that brings chemical engineering to new frontiers.
By providing an applied and modern approach, this volume will help readers understand the value and relevance of studying chemical physics and technology to all areas of applied chemical engineering, and gives them the depth of coverage they need to develop a solid understanding of the key principles in the field. Presenting a wide-ranging view of current developments in applied methodologies in chemical and biochemical physics research, the papers in this collection, all written by highly regarded experts in the field, examine various aspects of chemical and biochemical physics and experimentation. The book: * Highlights applications of chemical physics to subjects that chemical engineering students will see in graduate courses * Introduces the types of challenges and real problems that are encountered in industry and graduate research * Provides short chapters that introduce students to the subject in more bite-sized pieces * Presents biochemical examples and applications * Focuses on concepts above formal experimental techniques and theoretical methods The book is ideal for upper-level research students in chemistry, chemical engineering, and polymers. The book assumes a working knowledge of calculus, physics, and chemistry, but no prior knowledge of polymers.
Exposes a Powerful Material-Making Tool Dedicated to the physical, chemical, and structural transformations that take place during combustion synthesis (CS) of advanced materials, Combustion for Material Synthesis analyzes the nature of solid flame phenomenon and provides readers with undisputed proof that 'fire' is a powerful tool used in making materials. Of interest to specialists in the field of materials engineering, this book explores the physical and chemical principles of synthesis of materials in the self-sustained combustion mode. It describes mechanisms for a variety of solid-solid and gas-solid reactions and examines structure and properties of different materials produced by CS. The authors discuss a wide range of topics, including phenomenology, theory, experimental methods and observations, as well as properties of the product synthesized and approaches for large-scale materials production using the combustion synthesis technique. They examine conventional concepts and present recent breakthroughs in the field of materials synthesis by rapid self-sustained reactions that include fabrication of different nanomaterials. They compare CS with other methods, factoring in different types of combustion processes, including processes that can occur in a vacuum, inert gas, or oxygen-free atmosphere. Covering research on topics that have been around for a while, but not widely circulated, this work: Outlines in detail both fundamental aspects of CS, including modern theoretical approaches and advanced in situ experimental methods Examines the advantages and disadvantages, achievements, and challenges remained in heterogeneous combustion used for material synthesis Explores the emergence of a new fundamental direction in material science, i.e., structural macrokinetics Details new technologies that are based on fundamental scientific discoveries and innovative scientific ideas Analyzes structure and properties of variety of CS materials, including nanomaterials Authored by world-recognized specialists in the field of combustion synthesis for advanced materials, Combustion for Material Synthesis presents the state of the art in R&D in the field of CS, focusing on the fabrication of novel materials. It is intended for researchers, engineers, and graduate students from different disciplines and is also suggested as recommended reading for materials science courses.
Fuel Production with Heterogeneous Catalysis presents the groundbreaking discoveries, recent developments, and future perspectives of one of the most important areas of renewable energy research-the heterogeneous catalytic production of fuels. Comprised of chapters authored by leading experts in the field, this authoritative text: Focuses primarily on the state-of-the-art catalysts and catalytic processes anticipated to play a pivotal role in the production of fuels Describes production of fuels from renewable sources using environmentally friendly technologies Exposes the advantages and disadvantages of each production process Suggests solutions to minimize the impact of fuel transportation Conveys the importance of catalysis for the sustainable production of fuels Fuel Production with Heterogeneous Catalysis delivers a comprehensive overview of the current state of the art of the heterogeneous catalytic production of fuels, providing reaction mechanism schemes, engineering solutions, valuable industry insights, and more. |
![]() ![]() You may like...
Carbon-based Polymer Nanocomposites for…
Ahmad Fauzi Ismail, Pei Sean Goh
Paperback
Offshore Process Safety, Volume 2
Faisal Khan, Rouzbeh Abbassi
Paperback
R5,473
Discovery Miles 54 730
Process Systems Engineering for…
Ravendra Singh, Zhihong Yuan
Hardcover
Current Trends and Future Developments…
Angelo Basile, Kamran Ghasemzadeh
Paperback
R4,727
Discovery Miles 47 270
The Biodiesel Handbook, Second Edition
Gerhard Knothe, Jon Van Gerpen
Paperback
R3,193
Discovery Miles 31 930
Nanomaterials in Environmental Analysis
Suresh Kumar Kailasa, Tae Jung Park, …
Paperback
R4,752
Discovery Miles 47 520
Gibbs' Entropic Paradox and Problems of…
Eugene Barsky
Paperback
29th European Symposium on Computer…
Anton A Kiss, Edwin Zondervan, …
Hardcover
R11,775
Discovery Miles 117 750
14th International Symposium on Process…
Yoshiyuki Yamashita, Manabu Kano
Hardcover
R11,546
Discovery Miles 115 460
|