![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Chemical engineering
This book introduces the fundamental concepts of inverse heat transfer solutions and their applications for solving problems in convective, conductive, radiative, and multi-physics problems. Inverse Heat Transfer: Fundamentals and Applications, Second Edition includes techniques within the Bayesian framework of statistics for the solution of inverse problems. By modernizing the classic work of the late Professor M. Necati OEzisik and adding new examples and problems, this new edition provides a powerful tool for instructors, researchers, and graduate students studying thermal-fluid systems and heat transfer. FEATURES Introduces the fundamental concepts of inverse heat transfer Presents in systematic fashion the basic steps of powerful inverse solution techniques Develops inverse techniques of parameter estimation, function estimation, and state estimation Applies these inverse techniques to the solution of practical inverse heat transfer problems Shows inverse techniques for conduction, convection, radiation, and multi-physics phenomena M. Necati OEzisik (1923-2008) retired in 1998 as Professor Emeritus of North Carolina State University's Mechanical and Aerospace Engineering Department. Helcio R. B. Orlande is a Professor of Mechanical Engineering at the Federal University of Rio de Janeiro (UFRJ), where he was the Department Head from 2006 to 2007.
Believed to be a publishing first when originally brought out, this book covers all aspects of centrifugal gas cleaning devices. These are cyclones used as gas-solid separators for dedusting and as gas-liquid separators for demisting. The optimization of cyclone performance for any given task is a sought-after goal - but it is one that is seldom achieved in practice. This second edition will help mechanical and chemical engineers to achieve this optimization.
This new book explores the consideration of relationships that connect the structural and basic mechanical properties of polymeric mediums within the frameworks of fractal analysis with cluster model representations attraction. Incidentally, the choice of any structural model of medium or their combinations is defined by expediency and further usage convenience only. This book presents leading-edge research in this rapidly changing and evolving field. The book presents descriptions of the main reactions of high-molecular substances within the frameworks of fractal analysis and irreversible aggregation models. Synergetics and percolation theory were also used. In spite of the enormous number of papers dealing with the influence of the medium on the rate of chemical reactions (including synthesis of polymers), no strict quantitative theory capable of "universal" application has been put forward up until now. It is now possible to describe the relationship between the reaction rate constants and the equilibrium constants with the nature of the medium in which the reactions take place by means of a single equation. This important book for the first time gives structural and physical grounds of polymers synthesis and curing, and the fractal analysis is used for this purpose. This new book: * Highlights some important areas of current interest in polymer products and chemical processes * Focuses on topics with more advanced methods * Emphasizes precise mathematical development and actual experimental details * Analyzes theories to formulate and prove the physicochemical principles * Provides an up-to-date and thorough exposition of the present state of the art of complex polymeric materials
Examining energy, environment, and sustainability from the chemical engineering point of view, this book highlights critical issues faced by chemical engineers and biochemical engineers worldwide. The book covers recent trends in chemical engineering and bioprocess engineering, such as CFD simulation, statistical optimization, process control, waste water treatment, micro reactors, fluid bed drying, hydrodynamic studies of gas liquid mixture in pipe, and more. Other chapters cover important ultrasound-assisted extraction, process intensification, polymers and coatings, as well as modelling of bioreactor and enzyme systems and biological nitrification.
This book covers a broad range of polymeric materials and provides industry professionals and researchers in polymer science and technology with a single, comprehensive book summarizing all aspects involved in the functional materials production chain. This volume presents the latest developments and trends in advanced polymer materials and structures. It discusses the developments of advanced polymers and respective tools to characterize and predict the material properties and behavior. This book has an important role in advancing polymer materials in macro and nanoscale. Its aim is to provide original, theoretical, and important experimental results that use non-routine methodologies. It also includes chapters on novel applications of more familiar experimental techniques and analyses of composite problems that indicate the need for new experimental approaches. This new book: * Provides a collection of articles that highlight some important areas of current interest in key polymeric materials and technology * Gives an up-to-date and thorough exposition of the present state of the art of key polymeric materials and technology * Describes the types of techniques now available to the engineers and technicians and discusses their capabilities, limitations, and applications * Provides a balance between materials science and chemical aspects, basic and applied research * Focuses on topics with more advanced methods * Emphasizes precise mathematical development and actual experimental details * Explains modification methods for changing of different materials properties
This book provides a vast amount of information on new approaches, limitations, and control on current polymers and chemicals complexity of various origins, on scales ranging from single molecules and nano-phenomena to macroscopic chemicals. Starting with a detailed introduction, the book is comprised of chapters that survey the current progress in particular research fields. The chapters, prepared by leading international experts, yield together a fascinating picture of a rapidly developing research discipline that brings chemical technology and polymers to new frontiers.
This book provides an important structural analysis of polymer solutions and melts, using fractal analysis. The book covers the theoretical fundamentals of macromolecules fractal analysis. It then goes on to discuss the fractal physics of polymer solutions and the fractal physics of melts. The intended audience of the book includes specialists in chemistry and physics of polymer synthesis and those in the field of polymers and polymer composites processing.
This new book provides a solid understanding of the recent developments in the field of composites and nanocomposites. It explains the significance of the new fillers, such as graphene and arbon nanotubes in different matrix systems. The application of these materials in biological and others fields also makes this book unique. This detailed study of nanocomposites, their structure, processing and characterization will be of value in all walks of engineering life. The book covers the following topics: * polymer matrix composites * ceramic matrix composites * carbon matrix composites * wood-based composites * biocomposites * ecocomposites * nanocomposites * processing * properties * fracture and damage mechanics * durability * and more Composite materials are solids that contain two or more distinct constituent materials or phases, on a scale larger than the atomic. The term "composite" is usually reserved for those materials in which the distinct phases are separated on a scale larger than the atomic, and in which properties such as the elastic modulus are significantly altered in comparison with those of a homogeneous material. Composites have properties that cannot be achieved by either of the constituent materials alone. Composites are becoming more and more important as they can help improve our quality of life. Composites are put into service in flight vehicles, automobiles, boats, pipelines, buildings, roads, bridges, and dozens of other products. Researchers are finding ways to improve other qualities of composites so they may be strong, lightweight, long-lived, and inexpensive to produce. The science and engineering of composites and nanocomposites draws on traditional characterization and processing technologies. Research describing structures containing nanoparticles seems to rely on methods that are being pushed to the limit of resolution. Preparation of nanocomposites also poses very real processing challenges. The list of questions about the fabrication, characterization, and use of nanocomposites is long despite massive financial and intellectual investment. The magnitude of the effects these small particles impart to the bulk properties of a composite are great enough that the science is likely to continue to grow in importance.
By providing an applied and modern approach, this volume will help readers understand the value and relevance of studying chemical physics and technology to all areas of applied chemical engineering, and gives them the depth of coverage they need to develop a solid understanding of the key principles in the field. Presenting a wide-ranging view of current developments in applied methodologies in chemical and biochemical physics research, the papers in this collection, all written by highly regarded experts in the field, examine various aspects of chemical and biochemical physics and experimentation. The book: * Highlights applications of chemical physics to subjects that chemical engineering students will see in graduate courses * Introduces the types of challenges and real problems that are encountered in industry and graduate research * Provides short chapters that introduce students to the subject in more bite-sized pieces * Presents biochemical examples and applications * Focuses on concepts above formal experimental techniques and theoretical methods The book is ideal for upper-level research students in chemistry, chemical engineering, and polymers. The book assumes a working knowledge of calculus, physics, and chemistry, but no prior knowledge of polymers.
This new volume presents leading-edge research in the rapidly changing and evolving field of polymer science as well as on chemical processing. The topics in the book reflect the diversity of research advances in the production and application of modern polymeric materials and related areas, focusing on the preparation, characterization, and applications of polymers. Also covered are various manufacturing techniques. The book helps to fill the gap between theory and practice in industry. The book introduces current state-of-the-art technology in modern materials with an emphasis on the rapidly growing technologies. It takes a unique approach by presenting specific materials and then progresses into a discussion of the ways in which these materials and processes are integrated into today's functioning manufacturing industry. Readers will also discover how material properties relate to the process variables in a given process as well as how to perform quantitative engineering analysis of manufacturing processes.
This volume presents the various categories of high performance materials and their composites and provides up-to-date synthesis details, properties, characterization, and applications for such systems to give readers and users better information to select the required material. The volume provides the following features: * Includes a wide range of high performance and engineering materials * Details the synthesis and properties of each of new materials * Presents practical industrial applications * Contains material written by some of the world's most well-known and respected experts in the field
This book focuses on food, non-food, and industrial packaging applications of polymers, blends, nanostructured materials, macro, micro and nanocomposites, and renewable and biodegradable materials. It details physical, thermal, and barrier properties as well as sustainability, recycling, and regulatory issues. The book emphasizes interdisciplinary research on processing, morphology, structure, and properties as well as applications in packaging of food and industrial products. It is useful for chemists, physicists, materials scientists, food technologists, and engineers.
This book provides comprehensive coverage on the latest developments of research in the ever-expanding area of polymers and advanced materials and their applications to broad scientific fields including physics, chemistry, biology, and materials. It presents physical principles in explaining and rationalizing polymeric phenomena. Featuring classical topics that are conventionally considered as part of chemical technology, the book covers the chemical principles from a modern point of view. It analyzes theories to formulate and prove the polymer principles and offers future outlooks on applications of bioscience in chemical concepts.
Carbon Dioxide Reduction through Advanced Conversion and Utilization Technologies covers fundamentals, advanced conversion technologies, economic feasibility analysis, and future research directions in the field of CO2 conversion and utilization. This book emphasizes principles of various conversion technologies for CO2 reduction such as enzymatic conversion, mineralization, thermochemical, photochemical, and electrochemical processes. It addresses materials, components, assembly and manufacturing, degradation mechanisms, challenges, and development strategies. Applications of conversion technologies for CO2 reduction to produce useful fuels and chemicals in energy and industrial systems are discussed as solutions to reduce greenhouse effects and energy shortages. Particularly, the advanced materials and technology of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide cells (SOCs) are reviewed and the introduction, fundamentals, and some significant topics regarding this CO2 conversion process are discussed. This book provides a comprehensive and clear picture of advanced technologies in CO2 conversion and utilization. Written in a clear and detailed manner, it is suitable for students as well as industry professionals, researchers, and academics.
This book discusses conventional as well as unconventional wood drying technologies. It covers fundamental thermophysical and energetic aspects and integrates two complex thermodynamic systems, conventional kilns and heat pumps, aimed at improving the energy performance of dryers and the final quality of dried lumber. It discusses advanced components, kiln energy requirements, modeling, and software and emphasizes dryer/heat pump optimum coupling, control, and energy efficiency. Problems are included in most chapters as practical, numerical examples for process and system/components calculation and design. The book presents promising advancements and R&D challenges and future requirements.
This book focuses on chemical syntheses and processes for biofuel production mediated by microwave energy. This is the first contribution in this area serving as a resource and guidance manual for understanding the principles, mechanisms, design, and applications of microwaves in biofuel process chemistry. Green chemistry of microwave-mediated biofuel reactions and thermodynamic potentials for the process biochemistry are the focus of this book. Microwave generation, wave propagation, process design, development and configurations, and biofuel applications are discussed in detail.
"the present book will be of great value for both newcomers to the field and mature active researchers by serving as a coherent and timely introduction to some of the modern approaches, ideas, results, emerging understanding, and many open questions in this fascinating field of polymer glasses, supercooled liquids, and thin films" -Kenneth S. Schweizer, Morris Professor of Materials Science & Engineering, University of Illinois at Urbana-Champaign (from the Foreword) This book provides a timely and comprehensive overview of molecular level insights into polymer glasses in confined geometries and under deformation. Polymer glasses have become ubiquitous to our daily life, from the polycarbonate eyeglass lenses on the end of our nose to large acrylic glass panes holding water in aquarium tanks, with advantages over glass in that they are lightweight and easy to manufacture, while remaining transparent and rigid. The contents include an introduction to the field, as well as state of the art investigations. Chapters delve into studies of commonalities across different types of glass formers (polymers, small molecules, colloids, and granular materials), which have enabled microscopic and molecular level frameworks to be developed. The authors show how glass formers are modeled across different systems, thereby leading to treatments for polymer glasses with first-principle based approaches and molecular level detail. Readers across disciplines will benefit from this topical overview summarizing the key areas of polymer glasses, alongside an introduction to the main principles and approaches.
Polymeric foams are sturdy yet lightweight materials with applications across a variety of industries, from packaging to aerospace. As demand for these materials increase, so does innovation in the development of new processes and products. This book captures the most dynamic advances in processes, technologies, and products related to the polymeric foam market. It describes the latest business trends including new microcellular commercialization, sustainable foam products, and nanofoams. It also discusses novel processes, new and environmentally friendly blowing agents, and the development and usage of various types of foams, including bead and polycarbonate, polypropylene, polyetherimide microcellular, and nanocellular. The book also covers flame-retardant foams, rigid foam composites, and foam sandwich composites and details applications in structural engineering, electronics, and insulation. Authored by leading experts in the field, this book minimizes the gap between research and application in this important and growing area.
Addresses a Growing Need for the Development of Cellular and Porous Materials in Industry Building blocks used by nature are motivating researchers to create bio-inspired cellular structures that can be used in the development of products for the plastic, food, and biomedical industry. Representing a unified effort by international experts, Biofoams: Science and Applications of Bio-Based Cellular and Porous Materials highlights the latest research and development of biofoams and porous systems, and specifically examines the aspects related to the formation of gas bubbles in drink and food. The book offers a detailed analysis of bio-polymers and foaming technologies, biodegradable and sustainable foams, biomedical foams, food foams, and bio-inspired foams. Explores the Generation of New Materials with Wide-Ranging Technological Applicability This book introduces the science, technologies, and applications related to the use of biopolymers and biomaterials in the development of porous structures. It presents topics that include bio-based polymers for the development of biodegradable and sustainable polymeric foams, foams in food, foams in biomedical applications, biohybrids, and bio-inspired cellular and porous systems. It also includes recent studies on the design of polymer-based composites and hybrid scaffolds, weighs in on the challenges related to the production of porous polymers, and presents relevant examples of cellular architecture present in nature. In addition, this book: Focuses on materials compatible with natural tissues Discusses the engineering of bio-inspired scaffolds with the ability to mimic living tissue Reveals how to use renewable resources to develop more sustainable lightweight materials Illustrates the state of the art of porous scaffold and process techniques A book dedicated to material science, Biofoams: Science and Applications of Bio-Based Cellular and Porous Materials focuses on food technology, polymers and composites, biomedical, and chemical engineering, and examines how the principles used in the creation of cellular structures can be applied in modern industry.
Master the finite element method with this masterful and practical volume An Introduction to the Finite Element Method (FEM) for Differential Equations provides readers with a practical and approachable examination of the use of the finite element method in mathematics. Author Mohammad Asadzadeh covers basic FEM theory, both in one-dimensional and higher dimensional cases. The book is filled with concrete strategies and useful methods to simplify its complex mathematical contents. Practically written and carefully detailed, An Introduction to the Finite Element Method covers topics including: An introduction to basic ordinary and partial differential equations The concept of fundamental solutions using Green's function approaches Polynomial approximations and interpolations, quadrature rules, and iterative numerical methods to solve linear systems of equations Higher-dimensional interpolation procedures Stability and convergence analysis of FEM for differential equations This book is ideal for upper-level undergraduate and graduate students in natural science and engineering. It belongs on the shelf of anyone seeking to improve their understanding of differential equations.
This book is intended to fiber technologists, textile dealers, and textile salesmen a practical guideline to become acquainted with and to deepen their knowledge of the processes for the manufacture of film tapes, split-film yarns, and fibrillated film fibers.
Oil Spill Occurrence, Simulation, and Behavior provides practical insight into oil spills and their causes, impacts, response and cleanup methods, simple and advanced modeling of oil spill behavior, and oil spill simulation techniques. Discusses various sources of oil spills and major accidents Includes case studies on the 2010 Gulf of Mexico oil spill, including environmental, economic, and political impacts, modeling and behavior as well as response and cleanup methods Introduces some commercial softwares on predicting oil movement and spreading on water Describes properties and characteristics of crude oil and its products needed for simulation and prediction of behavior of an oil slick Written as an applied book with minimal math and theory, making it accessible to a wide range of readers The book includes more than 100 unique and informative images in color This essential book is aimed at professionals, academics, and scientists in the fields of chemical engineering, petroleum engineering, environmental engineering, marine and ocean engineering working on the simulation and modeling, mitigation, and prevention of oil spills.
This new volume discusses new and well-known electrochemical energy harvesting, conversion, and storage techniques. It provides significant insight into the current progress being made in this field and suggests plausible solutions to the future energy crisis along with approaches to mitigate environmental degradation caused by energy generation, production, and storage. Topics in Electrochemical Energy Conversion and Storage Systems for Future Sustainability: Technological Advancements address photoelectrochemical catalysis by ZnO, hydrogen oxidation reaction for fuel cell application, and miniaturized energy storage devices in the form of micro-supercapacitors. The volume looks at the underlying mechanisms and acquired first-hand information on how to overcome some of the critical bottlenecks to achieve long-term and reliable energy solutions. The detailed synthesis processes that have been tried and tested over time through rigorous attempts of many researchers can help in selecting the most effective and economical ways to achieve maximum output and efficiency, without going through time-consuming and complex steps. The theoretical analyses and computational results corroborate the experimental findings for better and reliable energy solutions.
Long-term success in scientific research requires skills that go well beyond technical prowess. Success and Creativity in Scientific Research: Amaze Your Friends and Surprise Yourself is based on a popular series of lectures the author has given to PhD students, postdoctoral researchers, and faculty at the Georgia Institute of Technology. Both entertaining and thought-provoking, this essential work supports advanced students and early career professionals across a variety of technical disciplines to thrive as successful and innovative researchers. Features: Discusses habits needed to find deep satisfaction in research, systematic and proven methods for generating good ideas, strategies for effective technical writing, and making compelling presentations Uses a conversational tone, making extensive use of anecdotes from scientific luminaries to engage readers Provides actionable methods to help readers achieve long-term career success Offers memorable examples to illustrate general principles Features topics relevant to researchers in all disciplines of science and engineering This book is aimed at students and early career professionals who want to achieve the satisfaction of performing creative and impactful research in any area of science or engineering.
Medicinal chemistry and pharmacology are closely associated fields, and the use of natural products for their medicinal properties is ever-growing. The study of drugs from natural products and their effects on the living body are explored in this volume. The book looks into the research, discovery, and characterization of chemicals that exhibit biological effects. Providing an informative compilation of research, valuable case studies, and reviews of existing literature in the area, the book focuses on the ethnobotanical uses of natural products and phytochemicals for health care, including applications for diabetes, ulcers, wound healing, chronic alcoholism, hemorrhoidal treatment, cancer mitigation, pain management, immunotherapy, and more. |
![]() ![]() You may like...
Chromatin Signaling and Diseases
Olivier Binda, Martin Ernesto Fernandez-Zapico
Hardcover
Groupoid Metrization Theory - With…
Dorina Mitrea, Irina Mitrea, …
Hardcover
R2,961
Discovery Miles 29 610
Family Communication about Genetics…
Clara L Gaff, Carma L. Bylund
Hardcover
R2,210
Discovery Miles 22 100
Boundary Integral Equations
George C. Hsiao, Wolfgang L. Wendland
Hardcover
R5,265
Discovery Miles 52 650
Disputed Messiahs - Jewish and Christian…
Rebekka Voss, John R. Crutchfield
Hardcover
R2,806
Discovery Miles 28 060
Mapping the Differentiated Consensus of…
Jakob Karl Rinderknecht
Hardcover
R3,541
Discovery Miles 35 410
Modern Problems in Applied Analysis
Piotr Drygas, Sergei Rogosin
Hardcover
R3,526
Discovery Miles 35 260
How to do Comparative Religion? - Three…
Ren e Goth oni
Hardcover
|