Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Chemical engineering
This classic reference examines the mechanisms driving adhesion, categories of adhesives, techniques for bond formation and evaluation, and major industrial applications. Integrating recent innovation and improved instrumentation, the work offers broad and comprehensive coverage. This edition incorporates several new adhesive classes, new application topics, and recent developments with nanoadhesives and bio-based adhesives. Existing chapters are thoroughly updated, revised, or replaced and authored by top specialists in the field. Abundant figures, tables, and equations appear throughout the work.
Bioethanol and Natural Resources: Substrates, Chemistry and Engineered Systems provides a comprehensive review of feedstocks, physiochemical and biological pretreatments, molecular substrates, cellulolytic and ligninolytic enzymes, and advanced technologies for producing bioethanol. Although this book provides a review of first-generation bioethanol feedstocks, chemistry, and processes, there is an emphasis on second-generation "cellulosic" ethanol production. With rapid advances in biofuels technologies and the continued global dependency on unsustainable extraction of fossil fuels, this text is timely. Although it is intended to be used as a supplemental text for advanced undergraduate or graduate level courses, the book is accessible to a non-academic audience. This book provides a unique opportunity to understand bioethanol production from the basic concepts and processes to the most cutting-edge technologies under development.
The proposed book focusses on metal mediated/catalyzed "controlled/living radical polymerization" (CRP/LRP) methods. It surveys a wide variety of catalyzed polymerization reactions, making it essentially a "one stop" review in the field. A significant contribution to polymer science is "metathesis polymerization" discovered by Grubbs and others. The book will cover various metathesis polymerization methods and implications in polymer industry.
The Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications, Second Edition provides detailed information on membrane separation technologies from an international team of experts. The handbook fills an important gap in the current literature by providing a comprehensive discussion of membrane applications in the chemical, food, pharmaceutical, and biotechnology industries as well as in the treatment of toxic industrial effluents. This revised second edition has been updated and expanded with discussions of new membrane products and processes and novel applications in engineering, life sciences, and energy conversion. It also includes new chapters in the field of membrane science and technology covering recent advances in RO and UF, ionic liquids, nanotechnology, roles of membrane in power generation, updates on fuel cells, new membrane extraction configuration, and other important topics. The handbook is equally suited for the newcomer to the field as it is for process engineers and research scientists (membranologists/membrane experts) who are interested in obtaining more advanced information about specific applications. It provides readers with a comprehensive and well-balanced overview of the present state of membrane science and technology.
The applications of solvent extraction (SX) and liquid membranes (LM) span chemistry, metallurgy, hydrometallurgy, chemical/mineral processing, and waste treatment-making it difficult to find a single resource that encompasses fundamentals as well as advanced applications. Solvent Extraction and Liquid Membranes: Fundamentals and Applications in New Materials draws together a diverse group of internationally recognized experts to highlight key scientific and technological aspects of solvent extraction that are critical to future work in the field. The first chapters identify relevant thermodynamics, kinetics, and interfacial behavior principles and introduce methods for calculating extraction equilibria and kinetic parameters. The next chapters focus on engineering and technological aspects of various industrial processes and plant applications, including optimization and modeling tools and calculations. The final chapters examine new materials for metal extraction and separations, covering preparation and application processes for organic and inorganic sorbents, solid polymeric extractants, and solvent impregnated resins. Solvent Extraction and Liquid Membranes offers a comprehensive review of the most important principles, calculations, and procedures involved in this widely applicable separation technique. The book's pedagogical approach will benefit students and researchers in the field as well as working scientists and engineers who wish to apply solvent extraction to their own applications.
As pharmaceutical companies strive to develop safer medicines at a lower cost, they must keep pace with the rapid growth of technology and research methodologies. Defying the misconception of process chemistry as mere scale-up work, Process Chemistry in the Pharmaceutical Industry, Vol. 2: Challenges in an Ever Changing Climate explores novel applications of synthetic, physical, and analytical chemistry in drug discovery and development. It offers an accurate depiction of the most up-to-date process research and development methods applied to synthesis, clinical trials, and commercializing drug candidates. The second installment in this progressive series, this volumereviews the latest breakthroughs to advance process chemistry, including asymmetric synthesis, crystallization, morphology, enzymatic intervention, green chemistry, macromolecules (monoclonal antibodies, biological molecules, polymers), enantioselectivity, organometallic chemistry, process analytical tools, chemical engineering controls, regulatory compliance, and outsourcing/globalization. It explores new approaches to synthetic processes, examines the latest safety methods and experiment design, and suggests realistic solutions to problems encountered in manufacturing and process development. Significant topics include atom economy, ease of synthesis, instrumentation, automization, quality control, cost considerations, green practices, and future trends. Jointly edited by the founder/president of Delphian Pharmaceuticals and the director of Chemical R&D at Pfizer, this book brings together contributions byreputed scientists, technologists, engineers, and professors from leading academic institutions, such as the Imperial College, UK, the University of Tokyo, ETH, Switzerland, the International University at Bermen, Germany, and the University of Connecticut, USA, and from principal pharmaceutical companies that include Merck, Bristol Myers Squibb, Pfizer, Novartis, Eli Lilly, Astrazeneca and DSM.
Aerobiology is the study of airborne particles that have an impact on humans and other organisms. Every day, we are exposed to airborne particles, including "natural" particles such as pollen, bacteria, and fungi, and "unnatural" particles, such as asbestos fibers and noxious chemicals. Aerobiology highlights the current interests in this field, primarily the ecology and distribution of airborne particles and their effects on health.
A Practical Guide to Instrumental Analysis covers basic methods of instrumental analysis, including electroanalytical techniques, optical techniques, atomic spectroscopy, X-ray diffraction, thermoanalytical techniques, separation techniques, and flow analytical techniques. Each chapter provides a brief theoretical introduction followed by basic and special application experiments. This book is ideal for readers who need a knowledge of special techniques in order to use instrumental methods to conduct their own analytical tasks.
Synthetic Membranes and Membrane Separation Processes addresses both fundamental and practical aspects of the subject. Topics discussed in the book cover major industrial membrane separation processes, including reverse osmosis, ultrafiltration, microfiltration, membrane gas and vapor separation, and pervaporation. Membrane materials, membrane preparation, membrane structure, membrane transport, membrane module and separation design, and applications are discussed for each separation process. Many problem-solving examples are included to help readers understand the fundamental concepts of the theory behind the processes. The book will benefit practitioners and students in chemical engineering, environmental engineering, and materials science.
The book presents concepts and equations of equilibrium thermodynamics or thermostatics. Key features that distinguish this book from others on chemical engineering thermodynamics are: a mathematical treatment of the developments leading to the discovery of the internal energy and entropy; a clear distinction between the classical thermodynamics of Carnot, Clausius and Kelvin and the thermostatics of Gibbs; an intensive/specific variable formalism from which the extensive variable formalism is obtained as a special case; a systematic method of obtaining the central equations of thermostatics with the use of the implicit/inverse function theorems and the chain rule. Please note: Taylor & Francis does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
Providing industry and academia with the ways of getting products approved by the FDA and the means of servicing expanding markets, this work presents and reviews techniques for testing antibacterial compounds. It discusses and illustrates the most effective methods for testing efficacy and safety of preinjection and preoperative washes, healthcare and food service workers' handwashes, and surgical scrubs.
Hydrogen offers a promising alternative for supplying clean and sustainable energy to meet increasing demands worldwide. However, materials are key to transforming the technology into a viable industry. Materials for the Hydrogen Economy describes the technical challenges and the current efforts in developing materials possessing the properties required for handling each stage of the hydrogen fuel chain. Thorough coverage offers newcomers as well as experienced engineers and researchers a reliable and fully scalable foundation in this field. This book covers all seven of the current hydrogen production methods, as well as distribution, storage, and utilization technologies, particularly fuel cells. It details the chemical reactions, processes, types of feedstock, and commercial equipment involved in hydrogen production. It also covers methods, membranes, liners, and sensors used for separating, sealing, and purifying hydrogen. Several chapters examine corrosion effects in pipeline steels and other storage and transportation vessels, leading to discussions of hydrogen permeation barriers, barrier coatings, and hydrides for on-board hydrogen storage. The final chapters focus on electrolytes and component materials for solid-oxide fuel cells (SOFCs) and H2/O2 PEM fuel cells. Materials for the Hydrogen Economy provides a broad review of material requirements for handling hydrogen from production to market. It explores the development of these materials alongside essential considerations and issues associated with their deployment.
This book provides a complete guide on tools and techniques for modeling of supercritical fluid extraction (SFE) as well as sub critical fluid extraction (SCFE) processes and phenomena. It provides details for both SFE and SCFE from managing the experiments to modeling and optimization. It includes the fundamentals of SFE as well as the necessary experimental techniques to validate the models. The optimization section includes the use of process simulators, conventional optimization techniques and state-of-the-art genetic algorithm methods. Numerous practical examples and case studies on the application of the modeling and optimization techniques on the SFE processes are also provided. Detailed thermo dynamical modeling with and without co-solvent and non equilibrium system modeling is another feature of the book. The book consists of seven chapters. Chapter one provides an overview of the field of SFE/SCFE and their importance and relation to food, cosmetic and pharmaceutical industries. Chapter two covers SFE/SCFE fundamentals and presents process descriptions. Chapter 3 discusses thermodynamic modeling of SFE including thermodynamic modeling in the presence of co solvent and also non-equilibrium state modeling. Chapter 4 provides details on the general modeling as well as optimization tools. Chapter 5 covers the general modeling techniques illustrated in chapter 4 and applies it for supercritical and sub critical modeling. Chapter 6 applies the optimization tools (traditional/genetic algorithm) for supercritical subcritical modeling. Finally, chapter 7 describes the procedure on how to design and mange experiments in SFE.
Mass transfer along with separation processes is an area that is often quite challenging to master, as most volumes currently available complicate the learning by teaching mass transfer linked with heat transfer, rather than focusing on more relevant techniques. With this thoroughly updated second edition, Mass Transfer and Separation Processes: Principles and Applications presents a highly thoughtful and instructive introduction to this sophisticated material by teaching mass transfer and separation processes as unique though related entities. In an ever increasing effort to demystify the subject, with this edition, the author- Avoids more complex separation processes Places a greater emphasis on the art of simplifying assumptions Conveys a greater sense of scale with the inclusion of numerous photos of actual installations Makes the math only as complicated as necessary while reviewing fundamental principles that may have been forgotten The book explores essential principles and reinforces the concepts with classical and contemporary illustrations drawn from the engineering, environmental, and biological sciences. The theories of heat conduction and transfer are utilized not so much to draw analogies but rather to make fruitful use of existing solutions not seen in other texts on the subject. Both an introductory resource and a reference, this important text serves environmental, biomedical, and engineering professionals, as well as anyone wishing to gain a grasp on this subject and its increasing relevance across a number of fields. It fills a void in traditional chemical engineering literature by providing access to the principles and working practices that allow masstransfer theory to be applied to separation processes.
Methods and types of devices used for measuring humidity use different measurement principles, materials and varying configurations, making it difficult to compare capabilities. Data presented provides detailed information on types of humidity sensors accompanied by an analysis of their strengths and weaknesses, allowing for comparison and selection of the best method for specific applications. The first volume focuses on devices based on optical principles of measurement, the second volume focuses on electronic and electrical devices. Numerous strategies for the fabrication and characterization of humidity-sensitive materials and sensing structures are described throughout. The second volume is entirely devoted to the consideration of different types of solid-state devices developed for humidity measurement. The third volume offers an analysis on various humidity sensitive materials and sensor technologies used in the fabrication of humidity sensors and methods acceptable for their testing.
Design of new processes that avoid the use of toxic reagents has been the focus of intense research of late. Catalysis by metals and non-metals offers diverse opportunities for the development of new organic reactions with promising range of selectivities-chemoselectivity, regioselectivity, diastereoselectivity, and enantioselectivity. Furthermore, these transformations frequently occur under mild conditions, tolerate a broad array of functional groups, and proceed with high stereoselectivity. The area of catalysis is sometimes referred to as a 'foundational pillar' of green chemistry. Catalytic reactions often reduce energy requirements and decrease separations because of increased selectivity; they are also capable of permitting the use of renewable feedstocks of less toxic reagents or minimizing the quantities of reagents needed. New catalytic organic synthesis methodologies have, thus, offered several possibilities for considerable improvement in the eco-compatibility of fine chemical production. Hence, these catalytic methodologies have emerged as powerful tools for the efficient and chemoselective synthesis of heterocyclic molecules. Key Features: Presents the synthesis of different five-membered heterocycles. Contains the most up-to-date information in this fast-moving field. Covers novel catalytic approaches used in the study and application of catalysts in synthetic organic reactions. Presents new methodologies for the synthesis of heterocycles.
Improving the effectiveness of catalysts is the best way to ensure cleaner, more efficient industrial processes for a wide range of applications. Catalyst Preparation: Science and Engineering explores the optimization of catalytic materials through traditional and novel methods of catalyst preparation, characterization, and monitoring on laboratory and industrial scales. The book presents many key principles of heterogeneous catalyst preparation and the methods used to synthesize a catalyst with a particular composition and morphology. The first chapters examine the synthesis of bulk materials including amorphous and mesoporous oxide supports, heteropolyacids, and colloidal metals. Subsequent chapters focus on the syntheses of heterogeneous nanoscale materials, including those based on metal complex?substrate interactions and those using non-interacting precursors via viscous drying. The final chapters concentrate on pretreatment, drying, and finishing effects before concluding with a prognosis on future applications involving catalyst preparation and the technological advances necessary for continued progress. An ideal companion for scientists exploring the preparation of application-specific catalysts based on desired catalytic properties, Catalyst Preparation: Science and Engineering provides a balanced overview of important synthesis parameters to consider for good catalyst design.
Spark ablation has been used worldwide for decades. However, in many fields, the special properties of nanoparticles, which come into play especially for sizes <20 nm, are just beginning to be exploited. The technique offers unprecedented flexibility regarding composition and size, and revolutions in the domains of catalysis and sensor technology, and more are to be expected. This book is the first review of spark ablation as a unique, scalable source of building blocks for nanotechnology and a powerful tool to promote this development. The introductory chapters give an overview of the technological fields that can exploit size effects, and explain the process of spark ablation in the gas phase, as well as principles of immobilizing particles to create novel products and materials. Fundamentals of the spark ablation process are then discussed, in addition to the characteristics of the particles formed. The rest of the book deals with a selection of application fields that profit from the spark ablation source from the perspective of research. With the authors' many years of experience in spark ablation and its applications, all the chapters complement one another and contain numerous cross-references in order to enable the reader to obtain a complete picture of the subject.
With the advancement of computers, the use of modeling to reduce time and expense, and improve process optimization, predictive capability, process automation, and control possibilities, is now an integral part of food science and engineering. New technology and ease of use expands the range of techniques that scientists and researchers have at their disposal making it increasingly important for the user to be aware of and have a good working knowledge of the alternatives. Unique in its scope, the Handbook of Food and Bioprocess Modeling Techniques provides a comprehensive overview of the modeling options available to today's researcher. The book covers a wide range of topics including transport processes, reaction kinetics, probabilistic modeling, data mining, neural network and genetic algorithms. Both mesoscale and macroscale modeling are covered. Each chapter is complete with a clear, succinct description of a specific modeling technique, followed by detailed examples of the utilization, application, benefits, and limitations of the technique described. By having both physics-based and observation-based models explained in one place, the researcher can find not only the most appropriate tool or combination of tools for the application, but also those that best suit the technical expertise of the personnel involved. The book emphasizes problem formulation and explains the choice and structure of the modeling technique from an application point of view, making it exceedingly practical and easy-to-use. The international panel of authors and contributors ensures the quality of the individual chapters and the usefulness of the information across wide-ranging food products and processes. An indispensable resource for the full range of contemporary modeling techniques, the Handbook of Food and Bioprocess Modeling Techniques provides food and bioprocess researchers in industry and academia with an invaluable comprehensive working reference.
The field of asymmetric catalysis is currently one of the hottest areas in chemistry. This unique book focuses on the mechanism of enantioselectivity in asymmetric catalysis, rather than asymmetric catalysis from the synthetic view. It describes reliable, experimentally and computationally supported mechanisms, and discusses the danger of so-called "plausible" or "accepted" mechanisms leading to wrong conclusions. It draws parallels to enzymatic catalysis in biochemistry, and examines in detail the physico-chemical aspects of enantioselective catalysis.
This book reviews advances in important and practically relevant homogeneous catalytic transformations, such as single-site olefin polymerizations and chemo- and stereo-selective oxidations. Close attention is paid to the experimental investigation of the active sites of catalytic oxidation systems and their mechanisms. Major subjects include the applications of NMR and EPR spectroscopic techniques and data obtained by other physical methods. The book addresses a broad readership and focus on widespread techniques available in labs with NMR and EPR spectrometers.
Batch chemical processes, so often employed in the pharmaceutical and agrochemical fields, differ significantly from standard continuous operations in the emphasis upon time as a critical factor in their synthesis and design. With this inclusive guide to batch chemical processes, the author introduces the reader to key aspects in mathematical modeling of batch processes and presents techniques to overcome the computational complexity in order to yield models that are solvable in near real-time. This book demonstrates how batch processes can be analyzed, synthesized, and designed optimally using proven mathematical formulations. The text effectively demonstrates how water and energy aspects can be incorporated within the scheduling framework that seeks to capture the essence of time. It presents real-life case studies where mathematical modeling of batch plants has been successfully applied.
Hemicelluloses and Lignin in Biorefineries provides an understanding of lignocellulosic biomass, which is mainly composed of cellulose, hemicelluloses, and lignin. It promotes the valorization of these molecules in the context of the bioeconomy and presents hemicelluloses and lignin, which are generated in lignocellulosic biorefineries, as the molecules of the future. The viability of these molecules lies in their renewability and potential. This book covers all aspects of hemicelluloses and lignin including structure, biosynthesis, extraction, biodegradation, and conversion. The book also looks ahead to the socioeconomic and environmental value of biobased industry and emphasizes an understanding of the potential of lignocellulosic biomass.
This book describes, analyses and discusses the main principles, phenomena and design strategies of reactive separation processes with an emphasis on the intensification as a basis of the sustainability. Different reactive separation processes are explained in detail to show the phenomena and with the purpose of understanding when their use allows advantages based on the output results. Case examples are analysed and the perspective of these processes in the future is discussed. The overall sustainability of reactive separation processes in the industry is also explained separately.
OSHA frequently requires companies to implement the type of program promoted in Cumulative Trauma Disorders, the first and only book to address both the medical and ergonomic aspects of cumulative trauma. This combination of conservative medical intervention and attention to ergonomic design of jobs creates the long-term cost control that companies are actively seeking. The book presents a down-to-earth discussion of issues facing companies as they try to implement an ergonomic program to control cumulative trauma. It examines cumulative trauma from all angles, paying particular attention to cumulative trauma disorders of the upper extremities. Specific topics addressed include CTD etiology, in-plant control programs, return-to-work concepts, ergonomic stressors and their root causes, and basic guidelines for ergonomic workstation design. Cumulative Trauma Disorders also explains many of the programmatic features included in the OSHA Ergonomic Guidelines for the Red Meat Industry, which OSHA uses as a means to structure their regulatory activities. This book discusses the rationale and value of implementing program components in the OSHA guidelines as they pertain to the production environment, presenting technical information in a clear, easy-to-read format. Cumulative Trauma Disorders is an essential book for managers of workers' compensation costs, plant nurses, safety and health technicians and managers, and ergonomic consultants. |
You may like...
The Alchemical Essence and the Chemical…
University of Glasgow. - Library.
Hardcover
R759
Discovery Miles 7 590
Green Technologies for the Environment
Sherine Obare, Rafael Luque
Hardcover
R5,414
Discovery Miles 54 140
Nanoscale Materials in Chemistry…
Larry Erikson, Ranjit Koodali, …
Hardcover
R5,412
Discovery Miles 54 120
Register. A Copy of the Register of the…
Great Britain. Sheffield Assay Office, B W (Bernard William) Watson
Hardcover
R761
Discovery Miles 7 610
Separation Process Principles - With…
J. D. Seader, Ernest J. Henley, …
Paperback
R1,492
Discovery Miles 14 920
Bioelectrosynthesis - Principles and…
Aijie Wang, Wenzong Liu, …
Hardcover
|