Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Chemical engineering
Exposes a Powerful Material-Making Tool Dedicated to the physical, chemical, and structural transformations that take place during combustion synthesis (CS) of advanced materials, Combustion for Material Synthesis analyzes the nature of solid flame phenomenon and provides readers with undisputed proof that 'fire' is a powerful tool used in making materials. Of interest to specialists in the field of materials engineering, this book explores the physical and chemical principles of synthesis of materials in the self-sustained combustion mode. It describes mechanisms for a variety of solid-solid and gas-solid reactions and examines structure and properties of different materials produced by CS. The authors discuss a wide range of topics, including phenomenology, theory, experimental methods and observations, as well as properties of the product synthesized and approaches for large-scale materials production using the combustion synthesis technique. They examine conventional concepts and present recent breakthroughs in the field of materials synthesis by rapid self-sustained reactions that include fabrication of different nanomaterials. They compare CS with other methods, factoring in different types of combustion processes, including processes that can occur in a vacuum, inert gas, or oxygen-free atmosphere. Covering research on topics that have been around for a while, but not widely circulated, this work: Outlines in detail both fundamental aspects of CS, including modern theoretical approaches and advanced in situ experimental methods Examines the advantages and disadvantages, achievements, and challenges remained in heterogeneous combustion used for material synthesis Explores the emergence of a new fundamental direction in material science, i.e., structural macrokinetics Details new technologies that are based on fundamental scientific discoveries and innovative scientific ideas Analyzes structure and properties of variety of CS materials, including nanomaterials Authored by world-recognized specialists in the field of combustion synthesis for advanced materials, Combustion for Material Synthesis presents the state of the art in R&D in the field of CS, focusing on the fabrication of novel materials. It is intended for researchers, engineers, and graduate students from different disciplines and is also suggested as recommended reading for materials science courses.
This second review volume is a follow-up to the book "Engineering of Chemical Complexity" that appeared in 2013. Co-edited by the Nobel laureate Gerhard Ertl, this book provides a broad perspective over the current research aimed at understanding, the design and control of complex chemical systems of various origins, on the scales ranging from single molecules and nano-phenomena to macroscopic chemical reactors. Self-organization behavior and emergence of coherent collective dynamics in reaction-diffusion systems, in active soft matter and biochemical networks are discussed. Special attention is paid to applications in cell biology, to molecular motors and microfluidics effects. The reviews, prepared by leading international experts from the EU, USA, Russia and Japan, together yield a fascinating picture of a rapidly developing research discipline that brings chemical engineering to new frontiers.
Comprehensive presentation of six synthesis processes of mullite precursors, such as gelation, coprecipitation, diphasic gelation, codecomposition, and microcomposite processes, are shown. Comparison of phase evolution processes of spray pyrolysis, monophasic, polymeric, coprecipitated, diphasic precursors and composite mullite powders is established. Critical analysis of the results of DTA, XRD, IR, and MAS NMR of earlier researchers, as shown in Review part of the book, is included. Chemistry behind the hydrolysis reaction of different components in six synthesis processes of mullite precursors in achieving homogeneity is shown. Elaborate discussion of the characterization of Al-Si spinel and t-mullite based on studies of alkali leaching, TEM/EDS, QXRD, and lattice constant measurements is done. Remarkable of diagrams/graphics are included in each chapter.
By providing an applied and modern approach, this volume will help readers understand the value and relevance of studying chemical physics and technology to all areas of applied chemical engineering, and gives them the depth of coverage they need to develop a solid understanding of the key principles in the field. Presenting a wide-ranging view of current developments in applied methodologies in chemical and biochemical physics research, the papers in this collection, all written by highly regarded experts in the field, examine various aspects of chemical and biochemical physics and experimentation. The book: * Highlights applications of chemical physics to subjects that chemical engineering students will see in graduate courses * Introduces the types of challenges and real problems that are encountered in industry and graduate research * Provides short chapters that introduce students to the subject in more bite-sized pieces * Presents biochemical examples and applications * Focuses on concepts above formal experimental techniques and theoretical methods The book is ideal for upper-level research students in chemistry, chemical engineering, and polymers. The book assumes a working knowledge of calculus, physics, and chemistry, but no prior knowledge of polymers.
Fuel Production with Heterogeneous Catalysis presents the groundbreaking discoveries, recent developments, and future perspectives of one of the most important areas of renewable energy research-the heterogeneous catalytic production of fuels. Comprised of chapters authored by leading experts in the field, this authoritative text: Focuses primarily on the state-of-the-art catalysts and catalytic processes anticipated to play a pivotal role in the production of fuels Describes production of fuels from renewable sources using environmentally friendly technologies Exposes the advantages and disadvantages of each production process Suggests solutions to minimize the impact of fuel transportation Conveys the importance of catalysis for the sustainable production of fuels Fuel Production with Heterogeneous Catalysis delivers a comprehensive overview of the current state of the art of the heterogeneous catalytic production of fuels, providing reaction mechanism schemes, engineering solutions, valuable industry insights, and more.
With contributions from experts from both the industry and academia, this book presents the latest developments in the identified areas. In addition, a thorough and updated coverage of the traditional aspects of heterogeneous catalysis such as preparation, characterization and use in well-established technologies such as nitration, ammoxidation and hydrofluorination is included. This book incorporates appropriate case studies, explanatory notes, and schematics for more clarity and better understanding.
Recent studies indicate that China accounts for about 96 percent of the world's supply of rare earth materials (REMs). With REMs becoming increasingly important for a growing number of high-tech applications, appropriate action must be taken to mitigate the effects of a shortage of critical REMs in defense systems and components. Bringing together information previously available only from disparate journal articles and databases, Rare Earth Materials: Properties and Applications describes the unique characteristics and applications of 17 REMs. It defines their chemical, electrical, thermal, and optical characteristics. Maintaining a focus on physical and chemical properties, it addresses the history and critical issues pertaining to mining and processing of REMs. In this book, Dr. A.R. Jha continues his distinguished track record of distilling complex theoretical physical concepts into an understandable technical framework that can be extended to practical applications across commercial and industrial frameworks. He summarizes the chemical, optical, electrical, thermal, magnetic, and spectroscopic properties of REMs best suited for next-generation commercial and military systems or equipment. Coverage includes extraction, recycling, refinement, visual inspection, identification of spectroscopic parameters, quality control, element separation based on specific application, pricing control, and environmental / geo-political considerations. Potential applications are identified with an emphasis on scientific instruments, nuclear resonance imaging equipment, MRI systems, magnetic couplers for uranium enrichment equipment, battery-electrodes, electric motors, electric generators, underwater sensors, and commercial and military sensors. The book describes unique applications of rare earth magnets in all-electric and hybrid electric cars and microwave components. It also considers the use of rare earth magnets in commercial and military systems where weight and size are the critical design requirements. Suitable for both students and design engineers involved in the development of high-technology components or systems, the book concludes by summarizing future applications in electro-optic systems and components, including infrared lasers, diode-pumped solid-state lasers operating at room temperatures, and other sophisticated military and commercial test equipment
Fulfilling the need for a classical approach, Experimental Combustion: An Introduction begins with an overview of the key aspects of combustion including chemical kinetics, premixed flame, diffusion flame, and liquid droplet combustion followed by a discussion of the general elements of measurement systems and data acquisition and analysis. In addition to these aspects, thermal flow measurements, gas composition measurements, and optical combustion diagnostics are covered extensively. Building upon this foundation in the fundamentals, the text addresses measurements, instruments, analyses, and diagnostics specific to combustion experiments, as well as:
From stoichiometry to smoke meters and statistical analysis, Experimental Combustion: An Introduction provides a solid understanding of the underlying concepts and measurement tools required for the execution and interpretation of practical combustion experiments."
Used lubricating oil is a valuable resource. However, it must be re-refined mainly due to the accumulation of physical and chemical contaminants in the oil during service. Refining Used Lubricating Oils describes the properties of used lubricating oils and presents ways these materials can be re-refined and converted into useful lubricants as well as other products. It provides an up-to-date review of most of the processes for used lubricating oil refining that have been proposed or implemented in different parts of the world, and addresses feasibility and criteria for selecting a particular process. The book begins with an overview of lubricating oil manufacturing, both petroleum-based and synthetic-based. It reviews the types and properties of lubricating oils and discusses the characteristics and potential of used lubricating oils. The authors describe the basic steps of used oil treatment including dehydration, distillation or solvent extraction, and finishing. They explore the combustion of used oil for use as fuel, covering chemistry and equipment, fuel oil properties, and combustion emissions. The book considers alternative processing options such as refinery processing and re-refining. It also reviews the major refining processes that have been suggested over the years for used oil. These include acid/clay, simple distillation, combinations of distillation and hydrogenation, solvent extraction, filtration, and coking processes. The book addresses economic, life cycle assessment, and other criteria for evaluating the attractiveness of an oil recycling project, examining various costs and presenting an economic evaluation method using an Excel spreadsheet that can be downloaded from the publisher's website. The book concludes with a chapter offering insights on how to choose the most suitable process technology.
The aim and purpose of this book is to provide an understanding of the current science underpinning Carbon Capture and Sequestration (CCS) and to provide students and interested researchers with sufficient background on the basics of chemical engineering, material science, and geology that they can understand the current state of the art of the research in the field of CCS. In addition, the book provides a comprehensive discussion of the impact on CCS on the energy landscape, society, and climate as these topics govern the success of the science being done in this field. The book is aimed at undergraduate students, graduate students, scientists, and professionals who would like to gain a broad multidisciplinary view of the research that is being carried out to solve one of biggest challenges of our generation.
The aim and purpose of this book is to provide an understanding of the current science underpinning Carbon Capture and Sequestration (CCS) and to provide students and interested researchers with sufficient background on the basics of chemical engineering, material science, and geology that they can understand the current state of the art of the research in the field of CCS. In addition, the book provides a comprehensive discussion of the impact on CCS on the energy landscape, society, and climate as these topics govern the success of the science being done in this field. The book is aimed at undergraduate students, graduate students, scientists, and professionals who would like to gain a broad multidisciplinary view of the research that is being carried out to solve one of biggest challenges of our generation.
Encapsulation of bioactives is a fast-growing approach in the food and pharmaceutical industry. Spray Drying Encapsulation of Bioactive Materials serves as a source of information to offer specialized and in-depth knowledge on the most well-known and used encapsulation technology (i.e., spray drying) and corresponding advances. It describes the efficacy of spray drying in terms of its advantages and challenges for encapsulation of bioactive ingredients. Discusses the potential of this technique to pave the way toward cost-effective, industrially relevant, reproducible, and scalable processes that are critical to the development of delivery systems for bioactive incorporation into innovative functional food products and pharmaceuticals Presents the latest research outcomes related to spray drying technology and the encapsulation of various bioactive materials Covers advances in spray drying technology that may result in a more efficient encapsulation of bioactive ingredients Includes computational fluid dynamics, advanced drying processes, as well as the morphology of the dried particles, drying kinetics analyzers, process controllers and adaptive feedback systems, inline powder analysis technologies, and cleaning-in-place equipment Aimed at food manufacturers, pharmacists, and chemical engineers, this work is of interest to anyone engaged in encapsulation of bioactive ingredients for both nutraceutical and pharmaceutical applications.
Tissue Engineering Strategies for Organ Regeneration addresses the existing and future trends of tissue engineering approaches for organ/tissue regeneration or repair. This book provides a comprehensive summary of the recent improvement of biomaterials used in scaffold-based tissue engineering, and the tools and different protocols needed to design tissues and organs. The chapters in this book provide the in-depth principles for many of the supporting and enabling technologies including the applications of BioMEMS devices in tissue engineering, and the combination of organoid formation and three dimensional (3D) bioprinting. The book also highlights the advances and strategies for regeneration of three-dimensional microtissues in microcapsules, tissue reconstruction techniques, and injectable composite scaffolds for bone tissue repair and augmentation. Key Features: Addresses the current obstacles to tissue engineering applications Provides the latest improvements in the field of integrated biomaterials and fabrication techniques for scaffold-based tissue engineering Shows the influence of microenvironment towards cell-biomaterials interactions Highlights significant and recent improvements of tissue engineering applications for the artificial organ and tissue generation Describes the applications of microelectronic devices in tissue engineering Describes different current bioprinting technologies
In the process industry, shutdown and turnaround costs are responsible for an excessive amount of maintenance expenses. Process Plants: Shutdown and Turnaround Management explores various types of shutdowns, presents recommendations for better management, and offers feasible solutions to help reduce overheads. Because turnaround management is the largest maintenance activity, plant turnaround is the focal point of this text. The book details a plan to lengthen the interval between turnarounds, and curtail costs in process production management by at least 30 percent. This practical guidebook provides a thorough study of shutdown management, discusses different types of shutdown and managing events (emergency, unplanned, planned, and turnaround), and covers all aspects of plant turnaround management including startup, shutdown, and maintenance. It describes the five phases of shutdown management initiating, planning, executing, controlling, and closing. It contains specific principles and precautions for successful shutdown planning, and highlights many aspects including turnaround philosophy, planning and scheduling, estimation, contractor management, execution, safety management, managing human resources, and post shut down review. Process Plants: Shutdown and Turnaround Management also includes topical information that readers can successfully apply to future shutdown projects. It is suitable for industry professionals and graduate students."
This book follows the 2002 edition of Catalysis by Ceria and Related Materials, which was the first book entirely devoted to ceria and its catalytic properties. In the ten years since the first edition a massive amount of work has been carried out in the field, and ceria has gained a prominent position in catalysis as one of the most valuable material for several applications. This second edition covers fundamental and applied aspects of the latest advances in ceria-based materials with a special focus on structural, redox and catalytic features. Special emphasis is given to nano-engineered and nano-shaped systems which are a key factor in the predictive and rational design of ceria with novel properties.In addition, the book presents recent advances in emerging and traditional large-scale applications of ceria in catalysis, such as the treatment of emissions from mobile sources (including diesel and gasoline engines). The primary readership includes catalysis and material science researchers from academy and industry and postdoctorate and graduate students in chemistry, chemical engineering and physics.
Standing as the first unified textbook on the subject, Liquid Crystals and Their Computer Simulations provides a comprehensive and up-to-date treatment of liquid crystals and of their Monte Carlo and molecular dynamics computer simulations. Liquid crystals have a complex physical nature, and, therefore, computer simulations are a key element of research in this field. This modern text develops a uniform formalism for addressing various spectroscopic techniques and other experimental methods for studying phase transitions of liquid crystals, and emphasises the links between their molecular organisation and observable static and dynamic properties. Aided by the inclusion of a set of Appendices containing detailed mathematical background and derivations, this book is accessible to a broad and multidisciplinary audience. Primarily intended for graduate students and academic researchers, it is also an invaluable reference for industrial researchers working on the development of liquid crystal display technology.
Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion new technologies that produce oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include less pollutant emissions as well as increased energy efficiency and productivity. Oxygen-Enhanced Combustion, Second Edition compiles information about using oxygen to enhance industrial heating and melting processes. It integrates fundamental principles, applications, and equipment design in one volume, making it a unique resource for specialists implementing the use of oxygen in combustion systems. This second edition of the bestselling book has more than doubled in size. Extensively updated and expanded, it covers significant advances in the technology that have occurred since the publication of the first edition. What s New in This Edition
This book offers a unified, up-to-date look at important commercialized uses of oxygen-enhanced combustion in a wide range of industries. It brings together the latest knowledge to assist those researching, engineering, and implementing combustion in power plants, engines, and other applications."
While continuous processes have found widespread application within chemical production, members of the research and development communities have historically favored the centuries old technique of iterative batch reactions. With the exception of combinatorial and microwave chemistry, little had been done to change the way that synthetic chemists conduct their research. However, today's synthetic chemist is under increasing pressure to discover and deliver compounds quickly, with an eye on devising scalable synthetic methodologies. An up-to-date account of recent developments in continuous flow organic synthesis, Micro Reaction Technology in Organic Synthesis is a useful resource for those both new to, and actively researching within, the field of micro reaction technology. Written by chemists for chemists, key synthetic information takes precedence over technological details Highlights the advantages and disadvantages of the technology, giving the reader an idea of where future research needs to be targeted Presents a comprehensive collection of synthetic reactions that have been investigated over the past decade, therefore is a one-stop resource to the reactions and techniques that have been investigated so far With an ever increasing number of commercial flow reaction platforms available, this book highlights the current state of the technology with the vision that more synthetic chemists will embark upon flow chemistry programs of research, facilitating the identification of novel synthetic methodologies the potential to be scaled directly to production.
This review volume, co-edited by Nobel laureate G Ertl, provides a broad overview on current studies in the understanding of design and control of complex chemical systems of various origins, on scales ranging from single molecules and nano-phenomena to macroscopic chemical reactors. Self-organizational behavior and the emergence of coherent collective dynamics in reaction diffusion systems, reactive soft matter and chemical networks are covered. Special attention is paid to the applications in molecular cell biology and to the problems of biological evolution, synthetic biology and design of artificial living cells. Starting with a detailed introduction on the history of research on complex chemical systems, its current state of the art and perspectives, the book comprises 19 chapters that survey the current progress in particular research fields. The reviews, prepared by leading international experts, yield together a fascinating picture of a rapidly developing research discipline that brings chemical engineering to new frontiers.
THE FIRST BOOK OF ITS KIND ON DISTILLATION TECHNOLOGY
In the past two decades, the field of nanoporous materials has undergone significant developments. As these materials possess high specific surface areas, well-defined pore sizes, and functional sites, they show a great diversity of applications such as molecular adsorption/storage and separation, sensing, catalysis, energy storage and conversion, drug delivery, and more. Nanoporous Materials: Synthesis and Applications surveys the key developments in the synthesis of nanoporous materials in a broad range from soft porous materials-such as porous organic and metal-organic frameworks-to hard porous materials, such as porous metals and metal oxides, and the significant advances in their applications to date. Topics Include: Synthetic approaches, characterization techniques, and applications of a variety of meso- and microporous polymers and organic frameworks Advances in the synthetic control of structures along with the function exploration of this new class of organic porous materials Synthesis and applications of nanoporous metal-organic frameworks, mesoporous silica, and nanoporous glass Synthesis of mesoporous carbons by a soft- and hard-templating method and their applications for supercapacitors and membrane separations Fabrication of nanoporous semiconductor materials Structural modification and functional improvement of layered zeolites Germanates and related materials with open-frameworks
A proper understanding of diffusion and mass transfer theory is critical for obtaining correct solutions to many transport problems. Diffusion and Mass Transfer presents a comprehensive summary of the theoretical aspects of diffusion and mass transfer and applies that theory to obtain detailed solutions for a large number of important problems. Particular attention is paid to various aspects of polymer behavior, including polymer diffusion, sorption in polymers, and volumetric behavior of polymer-solvent systems. The book first covers the five elements necessary to formulate and solve mass transfer problems, that is, conservation laws and field equations, boundary conditions, constitutive equations, parameters in constitutive equations, and mathematical methods that can be used to solve the partial differential equations commonly encountered in mass transfer problems. Jump balances, Green's function solution methods, and the free-volume theory for the prediction of self-diffusion coefficients for polymer-solvent systems are among the topics covered. The authors then use those elements to analyze a wide variety of mass transfer problems, including bubble dissolution, polymer sorption and desorption, dispersion, impurity migration in plastic containers, and utilization of polymers in drug delivery. The text offers detailed solutions, along with some theoretical aspects, for numerous processes including viscoelastic diffusion, moving boundary problems, diffusion and reaction, membrane transport, wave behavior, sedimentation, drying of polymer films, and chromatography. Presenting diffusion and mass transfer from both engineering and fundamental science perspectives, this book can be used as a text for a graduate-level course as well as a reference text for research in diffusion and mass transfer. The book includes mass transfer effects in polymers, which are very important in many industrial processes. The attention given to the proper setup of numerous problems along with the explanations and use of mathematical solution methods will help readers in properly analyzing mass transfer problems.
Optimal Control for Chemical Engineers gives a detailed treatment of optimal control theory that enables readers to formulate and solve optimal control problems. With a strong emphasis on problem solving, the book provides all the necessary mathematical analyses and derivations of important results, including multiplier theorems and Pontryagin's principle. The text begins by introducing various examples of optimal control, such as batch distillation and chemotherapy, and the basic concepts of optimal control, including functionals and differentials. It then analyzes the notion of optimality, describes the ubiquitous Lagrange multipliers, and presents the celebrated Pontryagin principle of optimal control. Building on this foundation, the author examines different types of optimal control problems as well as the required conditions for optimality. He also describes important numerical methods and computational algorithms for solving a wide range of optimal control problems, including periodic processes. Through its lucid development of optimal control theory and computational algorithms, this self-contained book shows readers how to solve a variety of optimal control problems.
Gallstone and other diseases of the biliary tract affect more than around 20% of the adult population. The complications of gallstones, acute pancreatitis and obstructive jaundice, can be lethal. This is the first book to systematically treat biliary tract and gallbladder modelling with physiological and clinical information in a biomechanical context. The book provides readers with detailed biomechanical modelling procedures for the biliary tract and gallbladder based on physiological information, clinical observations and experimental data and with the results properly interpreted in terms of clinical diagnosis and with biomechanical mechanisms for biliary diseases. The text can be used as a reference book for university undergraduates, postgraduates and professional researchers in applied mathematics, biomechanics, biomechanical engineering and biomedical engineering, as well as related surgeons.
Provides insights into the various aspects of microbial genomics and biotechnology for environmental cleanup In recent years, the application of genomics to biodegradation and bioremediation research has led to a better understanding of the metabolic capabilities of microorganisms, their interactions with hazardous and toxic chemical compounds, and their adaptability to changing environmental conditions. Genomics to Bioremediation: Principles, Applications, and Perspectives provides comprehensive and up-to-date information on cutting-edge technologies and approaches in bioremediation and biodegradation of environmental pollutants. Edited by prominent researchers in the field, this authoritative reference examines advanced genomics technologies, next-generation sequencing (NGS), and state-of-the-art bioinformatics tools while offering valuable insights into the unique functional attributes of different microbial communities and their impact on the removal of chemical contaminants. Each chapter includes numerous high-quality illustrations, detailed tables, extensive references, and step-by-step descriptions of various microbial metabolic pathways of degradation and biotransformation of environments containing various inorganic, metallic, organometallic, and organic hydrocarbon contaminants. Describes methodologies and underlying theory for the remediation, detoxification, and degradation of contaminated environments Covers new genomics technologies that address nutrient removal, resource recovery, and other major trends in environmental cleanup Highlights recent advances in microbial biotechnological approaches including the latest description of the relationship between microbes and the environment focusing on their impact on ecosystem services. Offers perspectives on energy saving, production, sustainability, and community involvement Discusses current challenges and future directions in the field of bioremediation Genomics to Bioremediation: Principles, Applications, and Perspectives is an essential resource for biochemical and environmental engineers, environmental microbiologists, academic researchers, process and treatment plant managers, policymakers, and industry professionals working in the areas of microbial degradation, bioremediation, and phytoremediation. |
You may like...
Nanoscale Materials in Chemistry…
Larry Erikson, Ranjit Koodali, …
Hardcover
R5,412
Discovery Miles 54 120
Bioelectrosynthesis - Principles and…
Aijie Wang, Wenzong Liu, …
Hardcover
Green Technologies for the Environment
Sherine Obare, Rafael Luque
Hardcover
R5,414
Discovery Miles 54 140
Fermented Liquors - a Treatise on…
Lewis 1805-1876 Feuchtwanger
Hardcover
R826
Discovery Miles 8 260
Modern Applications in Membrane Science…
Isabel Escobar, Bart Van der Bruggen
Hardcover
R5,419
Discovery Miles 54 190
|