![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Chemical engineering
An in-depth review of important preparative methods for the synthesis and chemical modification of polymers, this authoritative second edition examines the advantages and limitations of various polymerization applications and procedures. It features new approaches and innovative strategies from the most prominent industry and academic laboratories, reflecting the burgeoning role of polymers in modern science and technology. The book analyzes biodegradable polymers for biomedical applications; investigates the use of polyolefins, polymeric dienes, aromatic polyethers, polymides, and metal-containing macromolecules; and covers polymers of acrylic acid, methacrylic acid, and maleic acid.
At the interface of chemical industry operations, equipment manufacturer input, and the scientific literature, Industrial Crystallization of Melts explores and explains melt crystallization and purification in the industrial arena. This comprehensive account details the orderly conversion of melts into solid, salable end materials and procedures for purification by remelting; summarizes key theoretical concepts relating to crystalline matter and instationary heat transfer; and surveys the equipment available for specific processes. It also offers over 100 tested equations, as well as clear-cut methods for handling organic melts that call for special crystallization provisions.
This comprehensive handbook provides up-to-date knowledge and practical advice from established authorities in aerosol science. It covers the principles and practices of bioaerosol sampling, descriptions and comparisons of bioaerosol samplers, calibration methods, and assay techniques, with an emphasis on practicalities, such as which sampler to use and where it should be placed. The text also offers critiques concerning handling the samples to provide representative and meaningful assays for their viability, infectivity, and allergenicity. A wide range of microbes-viz., viruses, bacteria, fungi and pollens, and their fragments-are considered from such perspectives. Bioaerosols Handbook is divided into four parts, providing a wide-ranging reference work, as well as a practical guide on how best to sample and assay bioaerosols using current technology.
Recent toxicological studies show that nanoparticles released in technological processes and combustion processes outside industry can be dangerous for humans especially when entering the body through the mouth and nose. In connection with the above, the use of adequately effective respiratory protection equipment is of great importance in prophylactic and preventive activities. The first part of Nanoaerosols, Air Filtering and Respiratory Protection: Science and Practice refers to the general phenomena of filtration described on the basis of the authors' own experience and international reports. The book also includes a description of the respiratory system and principles of its functioning and the accumulation of aerosol particles. It goes on to discuss technological innovations regarding the production of filtering materials for protection against nanoparticles and the latest test methods. Finally, the book contains information about the proper selection and use of respiratory protective devices against airborne nanoparticles in the workplace and everyday life. Special attention is paid to proper fit procedures as well as use and maintenance activities of such devices. The content of the book with rich illustrative material has been presented so that it can be used by health and safety experts, students as well as employers, employees and private users of respiratory protective devices. "Through a comprehensive approach to the subject of the work, the authors present theoretical foundations as well as practical solutions that are used in the research and development of personal respiratory protection. The complementarity of the information contained in the book will allow the reader to become familiar with a wide range of knowledge related to the design and manufacture as well as assessment of properties and procedures for the use of respiratory protection against the adverse effects of aerosols, including air contaminated with nanoparticles and microparticles. In my opinion the book is a valuable part of the series Occupational Safety, Health, and Ergonomics: Theory and Practice, published by Taylor & Francis." -Maciej Bogun, LUKASIEWICZ - The Textile Research Institute, Lodz
Sustainability of Products, Processes and Supply Chains: Theory and Applications presents the recent theoretical developments and applications on the interface between sustainability and process systems engineering. It offers a platform for cutting-edge, holistic analyses of key challenges associated with computer-aided tools for incorporating sustainability principles and approaches into the design and operations of multi-scale process systems, ranging from molecular and products systems, to energy and chemical processes, and supply chains.
Many oil refineries employ hydroprocessing for removing sulfur and other impurities from petroleum feedstocks. Capable of handling heavier feedstocks than other refining techniques, hydroprocessing enables refineries to produce higher quality products from unconventional - and formerly wasted - sources. Hydroprocessing of Heavy Oils and Residua illustrates how to obtain maximum yields of high-value products from heavy oils and residue using hydroprocessing technologies. While most resources on hydroprocessing concentrate ongas oil and lower boiling products, this book details the chemistry involved and the process modifications required for the hydroprocessing of heavy crude oils and residua. Emphasizing the use of effective catalysts to ensure cleaner and more efficient industrial fuel processes, the book presents key principles of heterogeneous catalyst preparation, catalyst loading, and reactor systems. It explains how to evaluate and account for catalysts, reactor type, process variables, feedstock type, and feedstock composition in the design of hydroprocessing operations. The text concludes with examples of commercial processes and discusses methods of hydrogen production. To meet the growing demand for transportation fuels and fuel oil, modern oil refineries must find ways to produce high quality fuel products from increasingly heavy feedstocks. Hydroprocessing of Heavy Oils and Residua contains the fundamental concepts, technologies, and process modifications refineries need to adapt current hydroprocessing technologies for processing heavier feedstocks.
Handbook of Refinery Desulfurization describes the operation of the various desulfurization process units in a petroleum refinery. It also explains the processes that produce raw materials for the petrochemical industry. It illustrates all the possible processes to lower the sulfur contents in petroleum and its fractions to decrease emissions of sulfur oxides. This book introduces you to desulfurization concepts, including biodesulfurization, as well as technology, giving guidance on how to accomplish desulfurization in various refining processes. It contains background chapters on the composition and evaluation of feedstocks and includes diagrams and tables of feedstocks and their respective produce. It also outlines how to decide which method should be employed to remove sulfur from different feedstocks. A practical and thorough discussion of the field, Handbook of Refinery Desulfurization gives you a strong grasp of the various processes involved with industrial desulfurization while giving you pointers on which procedures to use under certain conditions.
Although there is a shortage of light petroleum, there is plenty of heavy petroleum rich in macromolecules available, creating an increasing interest for processes that can convert heavy oils to light oils. Process Chemistry of Petroleum Macromolecules provides the scientific basis for such processes, presenting methods to determine improvement potential. Topics include characterization, thermal kinetics, phase behavior, and separation. Revealing that the science of petroleum macromolecules is simpler and more exciting than imagined, it also discusses macromolecules that self-associate, liquid crystalline phases, reactions triggered by phase separation, and both dispersed and dissolved solutes.
Interest in structured catalysts is steadily increasing due to the already proven, as well as potential, advantages of these catalysts. Updating the comprehensive coverage of the first edition published in 1998 with the latest science and applications, Structured Catalysts and Reactors, Second Edition gives detailed information on all aspects of structured catalysts and reactors, including: materials, mass transfer, selectivity, activity, and stability; catalyst preparation, design, and characterization; process development; modeling and optimization; reactor design; and operation costs and considerations. The book first examines how monolithic catalysts are used to clean exhaust gas from gasoline engines, treat industrial off-gases, burn fuels in commercial settings, and synthesize chemicals in two- and three-phase processes. It discusses configurations, microstructure, physical properties, and manufacture of ceramic and metallic monoliths before directing its focus to arranged catalysts and structured packings in terms of mass transfer. The book then explores catalytically active membranes and filters, featuring metallic membranes, permeation mechanisms, preparation and modeling, commercial membranes, and the latest applications, such as zeolitic membranes. Finally, several chapters present techniques for incorporating catalytic species into the structured catalyst support and controlling catalyst nanoporosity. This book conveys the scientific as well as economic advantages of using these unconventional catalytic techniques. With over 1500 references, tables, drawings, and photographs, as well as in-depth discussions and a new approach to catalytic processes, Structured Catalysts and Reactors, Second Edition is an essential reference for anyone working with or studying catalysis.
In the past two decades, new modeling efforts have gradually incorporated more molecular and structural detail in response to environmental and technical interests. Molecular Modeling in Heavy Hydrocarbon Conversions introduces a systematic molecule-based modeling approach with a system of chemical engineering software tools that can automate the entire model building, solution, and optimization process. Part I shows how chemical engineering principles provide a rigorous framework for the building, solution, and optimization of detailed kinetic models for delivery to process chemists and engineers. Part II presents illustrative examples that apply this approach to the development of kinetic models for complex process chemistries, such as heavy naphtha reforming and gas oil hydroprocessing. Molecular Modeling in Heavy Hydrocarbon Conversions develops the key tools and best possible approaches that process chemists and engineers can use to focus on the process chemistry and reaction kinetics for performing work that is repetitive or prone to human-error accurately and quickly.
Bio-butanol has gained wide recognition globally as an advanced biofuel, which can be used directly as a substitute for gasoline in internal combustion engines. This book provides readers with an in-depth knowledge of the various aspects and steps involved in butanol production. Further, the current global status, history, various technologies adopted for butanol production from different feedstocks, and the role of microorganisms in the production process are also covered. The book has 12 chapters, with each chapter dedicated to covering various aspects of butanol, from production to applications.
Molecularly Imprinted Catalysts: Principle, Synthesis, and Applications is the first book of its kind to provide an in-depth overview of molecularly imprinted catalysts and selective catalysis, including technical details, principles of selective catalysis, preparation processes, the catalytically active polymers themselves, and important progress made in this field. It serves as an important reference for scientists, students, and researchers who are working in the areas of molecular imprinting, catalysis, molecular recognition, materials science, biotechnology, and nanotechnology. Comprising a diverse group of experts from prestigious universities and industries across the world, the contributors to this book provide access to the latest knowledge and eye-catching achievements in the field, and an understanding of what progress has been made and to what extent it is being advanced in industry.
Green chemistry is the design of chemical products and processes that reduce or eliminate the use or generation of hazardous substances. Green polymer chemistry is an extension of green chemistry to polymer science and engineering. Developments in this area have been stimulated by health and environmental concerns, interest in sustainability, desire to decrease the dependence on petroleum, and opportunities to design and produce "green" products and processes. Major advances include new uses of biobased feedstock, green reactions, green processing methodologies, and green polymeric products. A current feature of green polymer chemistry is that it is both global and multidisciplinary. Thus, publications in this field are spread out over different journals in different countries. Moreover, a successful research effort may involve collaborations of people in various disciplines, such as organic chemistry, polymer chemistry, material science, chemical engineering, biochemistry, molecular biology, microbiology, enzymology, toxicology, environmental science, and analytical chemistry. This book combines the major interdisciplinary research in this field and is targeted for scientists, engineers, and students, who are involved or interested in green polymer chemistry. These may include chemists, biochemists, material scientists, chemical engineers, microbiologists, molecular biologists, enzymologists, toxicologists, environmental scientists, and analytical chemists. It can be a textbook for a course on green chemistry and also a reference book for people who need information on specific topics involving biocatalysis and biobased materials.
This text examines the thermal and catalytic processes involved in the refining of petroleum including visbreaking, coking, pyrolysis, catalytic cracking, oligomerization, alkylation, hydrofining, hydroisomerization, hydrocracking, and catalytic reforming. It analyzes the thermodynamics, reaction mechanisms, and kinetics of each process, as well as the effects of operating conditions and reactor design on process performance and product quality. This is a valuable resource for chemists who wish to improve their knowledge of some of the real world issues that must be addressed in hydrocarbon conversion. Topics include processes on metallic catalysts, processes using bifunctional catalysts, and catalytic reforming.
Surface and colloid chemistry principles impact many aspects of our daily lives, ranging from the cleaners and cosmetics we use to combustion engines and cement. Exploring the range of this field of study, Surface and Colloid Chemistry provides a detailed analysis of its principles and applications and demonstrates how they relate to natural phenomena and industrial processes. Surface and colloid chemistry at work in nature and industry: rain drops combustion engines soap bubbles foam food products air pollution waste-water treatment washing and cleaning cosmetics painting and printing oil and gas production oil spills plastics and polymers biology and pharmaceuticals milk products cement adhesive coal The book begins with an introduction to surfaces and colloids. It describes basic considerations regarding liquids and capillarity, and examines the liquid-solid interface phenomena. It explores the physicochemical properties of surfactants, Langmuir-Blodgett films, adsorption on solid surfaces, and adsorption as it relates to cleaning processes. Then the author examines colloidal systems and thin liquid films before moving on to emulsion science and technology. The final chapter provides examples of applications in science and a range of industries. Examples and Illustrations Integrating real-world examples throughout the text, this volume stimulates readers to consider both fundamental theory and industrial applications. More than 100 figures elucidate the concepts described in the text. Sample questions and answers are provided where appropriate, along with detailed data and discussions. Pertinent references are offered to facilitate further study.
A practical and hands-on discussion of modern distillation control In A Real-time Approach to Distillation Process Control, a team of distinguished researchers and industrial practitioners delivers a practical text combining hands-on and active learning using process simulation with discussions of the fundamental knowledge and tools required to apply modern distillation control principles. The book offers a balanced, real-time approach integrated with practical insights. It includes many exercises designed to be simulator agnostic that can be performed on the process simulator locally available to the reader. Readers will discover explorations of topics including distillation control hardware, distillation composition control, refinery versus chemical plant distillation control, distillation control tuning, advanced regulatory control, and more. They'll also find: A thorough introduction to distillation fundamentals, as well as basic and advanced modern controls from a practical point of view Comprehensive explorations of known base controls combined with modern control practices Practical discussions of hands-on modelling and simulation exercises, allowing the reader to design and tune controls on a distillation column Fulsome treatments of control structure design integrated with controller tuning using a real-time approach Perfect for senior undergraduate and graduate students studying general process control or distillation process control, A Real-time Approach to Distillation Process Control will also benefit plant managers, production supervisors, startup supervisors, operations engineers, production engineers, and chemical engineers working in industry.
This book summarizes the various microfluidic-based approaches for single-cell capture, isolation, manipulation, culture and observation, lysis, and analysis. Single-cell analysis reveals the heterogeneities in morphology, functions, composition, and genetic performance of seemingly identical cells, and advances in single-cell analysis can overcome the difficulties arising due to cell heterogeneity in the diagnostics for a targeted model of disease. This book provides a detailed review of the state-of-the-art techniques presenting the pros and cons of each of these methods. It also offers lessons learned and tips from front-line investigators to help researchers overcome bottlenecks in their own studies. Highlighting a number of techniques, such as microfluidic droplet techniques, combined microfluidics-mass-spectrometry systems, and nanochannel sampling, it describes in detail a new microfluidic chip-based live single-cell extractor (LSCE) developed in the editor's laboratory, which opens up new avenues to use open microfluidics in single-cell extraction, single-cell mass spectrometric analysis, single-cell adhesion analysis and subcellular operations. Serving as both an elementary introduction and advanced guidebook, this book interests and inspires scholars and students who are currently studying or wish to study microfluidics-based cell analysis methods.
Atomization and sprays are used in a wide range of industries: mechanical, chemical, aerospace, and civil engineering; material science and metallurgy; food; pharmaceutical, forestry, environmental protection; medicine; agriculture; meteorology and others. Some specific applications are spray combustion in furnaces, gas turbines and rockets, spray drying and cooling, air conditioning, powdered metallurgy, spray painting and coating, inhalation therapy, and many others. The Handbook of Atomization and Sprays will bring together the fundamental and applied material from all fields into one comprehensive source. Subject areas included in the reference are droplets, theoretical models and numerical simulations, phase Doppler particle analysis, applications, devices and more.
Describes the methodologies and best practices of the sterile manufacture of drug products Thoroughly trained personnel and carefully designed, operated, and maintained facilities and equipment are vital for the sterile manufacture of medicinal products using aseptic processing. Professionals in pharmaceutical and biopharmaceutical manufacturing facilities must have a clear understanding of current good manufacturing practice (cGMP) and preapproval inspection (PAI) requirements. Sterile Processing of Pharmaceutical Products: Engineering Practice, Validation, and Compliance in Regulated Environments provides up-to-date coverage of aseptic processing techniques and sterilization methods. Written by a recognized expert with more than 20 years of industry experience in aseptic manufacturing, this practical resource illustrates a comprehensive approach to sterile manufacturing engineering that can achieve drug manufacturing objectives and goals. Topics include sanitary piping and equipment, cleaning and manufacturing process validation, computerized automated systems, personal protective equipment (PPE), clean-in-place (CIP) systems, barriers and isolators, and guidelines for statistical procedure. Offering authoritative guidance on the key aspects of sterile manufacturing engineering, this volume: Covers fundamentals of aseptic techniques, quality by design, risk assessment and management, and operational requirements Addresses various regulations and guidelines instituted by the FDA, ISPE, EMA, MHRA, and ICH Provides techniques for systematic process optimization and good manufacturing practice Emphasizes the importance of attention to detail in process development and validation Features real-world examples highlighting different aspects of drug manufacturing Sterile Processing of Pharmaceutical Products: Engineering Practice, Validation, and Compliance in Regulated Environments is an indispensable reference and guide for all chemists, chemical engineers, pharmaceutical professionals and engineers, and other professionals working in pharmaceutical sciences and manufacturing.
Rotary Drum: Fluid Dynamics, Dimensioning Criteria, and Industrial Applications provides in-depth analysis of fluid dynamics in rotary drums. In addition, it provides analysis on the different configurations, including nonconventional ones, diverse industrial applications, and comparison with competing dryer types, as well as the modeling of these devices. Covering important aspects of fluid dynamics in rotary drums, which directly influence the drying performance, the book also considers the significant cost of conventional rotary dryers. It takes into account the scale-up of rotary dryers and the control of product quality during processing, which can leave the final product overdried and overheated, wasting thermal energy. The book serves as a useful reference for researchers, graduate students, and engineers in the field of drying technology.
Hazardous Waste Risk Assessment provides a concise yet comprehensive examination of concepts and techniques in risk assessment that can be applied to hazardous waste problems. The book emphasizes the use of health risk assessment to support management decisions on hazardous waste disposal and site remediation programs. Methods discussed include those for developing strategies for health and environmental assessment and site restoration tasks, evaluating corrective action programs, determining the effects of risk assessment results on risk management decisions in hazardous waste programs and general risk management and prevention programs, and performing safety evaluations of hazardous waste facilities. Step-by-step numerical case evaluations are used to help present the book in an easy-to-follow, realistic manner. Features
A wide-ranging compilation of techniques, Extrapolation Practice for Ecotoxicological Effect Characterization of Chemicals describes methods of extrapolation in the framework of ecological risk assessment. The book, informally known as EXPECT, identifies data needs and situations where these extrapolations can be most usefully applied, making it a practical guide to the application of extrapolation procedures. It focuses on the extrapolation of chemical effects and covers the extrapolation of exposures in the context of interactions between toxicants and the matrix.
Thermodynamics is an indispensable tool for developing a large and growing fraction of new polymers and polymer blends. These two volumes show the researcher how thermodynamics can be used to rank polymer pairs in order of immiscibility, including the search for suitable chemical structure of compatibilizers. Because of the great current commercial interest in this most dynamic sector of the polymer industry, there is high interest in studying their physical and mechanical properties, their structures, and the processes of their formation and manufacture. These Books are dedicated to Analysis of the Thermodynamics of Polymer Blends. Thermodynamic behavior of blends determines the compatibility of the components, their morphological features, rheological behavior, and microphase structures. As a result, the most important physical and mechanical characteristics of blends can be identified.
After a day's work is finished, take a look around at your company. Do standard production processes and day-to-day operations leave you with loaded trash bins from the front office to the factory floor-and every place inbetween? Such "solid waste" does far more than squander resources and imperil the environment... it's undoubtedly eating up countless dollars of your profits. Corporations throughout the nation are learning to tame solid waste, by implementing improved management of materials. Preventing Waste at the Source demonstrates how more than 50 companies have effectively reduced solid waste throughout all departments-and achieved dramatic reductions in operating costs. Beginning with a strategic framework, readers can then zero in on wasteful practices affecting all aspects of a business. Paper reduction measures for administrative offices, for instance. Ways to minimize packing materials over in the shipping department, while still protecting the product. There's also steps where suppliers and customers can take part in waste minimization efforts. Case histories prove it can be done, to everyone's advantage. Researched and compiled by the Indiana Institute on Recycling, Preventing Waste at the Source offers practical, on-the-job assistance to environmental managers, plant managers, manufacturing and quality engineers. Put its techniques and real-life guidance to work. You'll save more than money: you'll help save the environment.
Molecular and Colloidal Electro-Optics presents cohesive coverage from internationally recognized experts on new approaches and developments in both theoretical and experimental areas of electro-optic science. It comprises a well-integrated yet multi-disciplinary treatment of fundamental principles, strategies, and applications of electro-optic techniques for the characterization of macromolecular, small-particle, and nanomolecular systems. Following a historical review of post-war advances in electro-optics of disperse systems, the first part of the book focuses on the latest achievements in electro-optic theory, particularly low-frequency relaxation. It offers comparative discussions and experimental data to accompany different viewpoints on the origin of the low-frequency effects and multiple theoretical constructions. The second part highlights the unique advantage of using electro-optics as an alternative to conventional characterization and analysis of colloidal systems. Demonstrating the sensitivity of electro-optic methods to interparticle interactions, the book explains how these methods are used to analyze particle surface electric states, evaluate phase transitions, and determine physical properties. As the first treatment of this subject to surface in more than fifteen years, Molecular and Colloidal Electro-Optics is a definitive, up-to-date portrait of modern colloidal electro-optic science. This one-stop reference to the latest theory, methods, and applications is ideal for advanced graduate students and researchers in biophysical chemistry, microbiology, polymer, colloid, and nanoscience. |
![]() ![]() You may like...
Adolescent Pregnancy and Parenting…
Patricia L. East, Marianne E. Felice
Paperback
R1,495
Discovery Miles 14 950
Open Heart Surgery - Theory and Practice
John C. Callaghan, Joseph Wartack
Hardcover
R2,330
Discovery Miles 23 300
|