Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Chemical engineering
The authors expound on non-traditional phenomena for transfer theory, which are nevertheless of considerable interest in wave measurements, and bring the advances of transfer theory as close as possible to the practical needs of those working in all areas of wave physics. The book opens with a historical overview of the topic, then moves on to examine the phenomenological theory of radiative transport, blending traditional theory with original ideas. The transport equation is derived from first principles, and the ensuing discussion of the diffraction content of the transport equation and non-classical radiometry is illustrated by practical examples from various fields of physics. Popular techniques of solving the transport equation are discussed, paying particular attention to wave physics and computing the coherence function. The book also examines various problems which are no longer covered by the traditional radiative transfer theory, such as enhanced backscattering and weak localization phenomena, nonlinear transport problems and kinetic equations for waves. This monograph bridges the gap between the simple power balance description in radiative transfer theory and modern coherence theory. It will be of interest to researchers and professionals working across a wide range of fields from optics, acoustics and radar theory to astrophysics, radioastronomy and remote sensing, as well as to students in these areas.
Sustainable Catalysis in Ionic Liquids provides an up-to-date overview of the relatively underexplored area of the use of room temperature ionic liquids as organocatalysts for a range of organic reactions, including polymerizations. Using organic molecules to promote reactions is an attractive option as these organic molecules can be safer than metal-based options. However, it is still important to be able to recycle and reuse these organic promoters. Ionic liquids provide this opportunity.
This book on hollow fiber contractors presents an up-to-date compilation of the latest developments and milestones in this membrane technology. Hollow Fiber Membrane Contactors: Module Fabrication, Design and Operation, and Potential Applications provides a comprehensive discussion of hollow fiber membrane applications (including a few case studies) in biotechnology, chemical, food, and nuclear engineering. The chapters in this book have been classified using the following, based on different ways of contacting fluids with each other: Gas-liquid contacting; Liquid-liquid contacting; Supported liquid membrane; Supported gas membrane; Fluid-fluid contacting. Other features include: Discusses using non-dispersive solvent extraction, hollow fiber strip dispersion, hollow fiber supported liquid membranes and role of process intensification in integrated use of these processes Provides technical and economic perspectives with several case studies related to specific scenarios Demonstrates module fabrication, design, operation and maintenance of hollow fiber contactors for different applications and performance Presents discussion on newer concepts like membrane emulsification, membrane nanoprecipitation, membrane crystallization and membrane condenser Special focus on emerging areas such as the use of hollow fiber contactor in back end of nuclear fuel cycle, membrane distillation, dehumidification of air and gas absorption and stripping Discusses theoretical analysis including computational modeling of different hollow fiber membrane processes, and presents emphasis on newly developed area of hollow fiber membrane based analytical techniques Presents discussion on upcoming area dealing with hollow fiber contactors-based technology in fermentation and enzymatic transformation and in chiral separations This book is equally suited for newcomers to the field, as well as for engineers and scientists that have basic knowledge in this field but are interested in obtaining more information about specific future applications.
3D Printing: Fundamentals to Emerging Applications discusses the fundamentals of 3D printing technologies, current state-of-the-art knowledge, and their emerging applications in many important sectors such as energy, biomedicals, and sensors. Top international authors in their field cover the fundamentals of 3D printing technologies for batteries, supercapacitors, fuel cells, sensors, biomedical, and other emerging applications. They also address current challenges and possible solutions in 3D printing technologies for advanced applications. Key Features: Addresses the state-of-the-art progress and challenges in 3D printing technologies Explores the use of various materials in 3D printing for advanced applications Covers fundamentals of the electrochemical behavior of various materials for energy applications Provides new direction and enables understanding of the chemistry, electrochemical properties, and technologies for 3D printing This is a must-have resource for students as well as researchers and industry professionals working in energy, biomedical, materials, and nanotechnology fields.
Interior Provocations: History, Theory, and Practice of Autonomous Interiors addresses the broad cultural, historical, and theoretical implications of interiors beyond their conventionally defined architectural boundaries. With provocative contributions from leading and emerging historians, theorists, and design practitioners, the book is rooted in new scholarship that expands traditional relationships between architecture and interiors and that reflects the latest theoretical developments in the fields of interior design history and practice. This collection contains diverse case studies from the late eighteenth century to the twenty-first century including Alexander Pope's Memorial Garden, Design Indaba, and Robin Evans. It is an essential read for researchers, practitioners, and students of interior design at all levels.
In chemical processes, the progressive deactivation of solid catalysts is a major economic concern and mastering their stability has become as essential as controlling their activity and selectivity. For these reasons, there is a strong motivation to understand the mechanisms leading to any loss in activity and/or selectivity and to find out the efficient preventive measures and regenerative solutions that open the way towards cheaper and cleaner processes. This book covers the fundamental and applied aspects of solid catalyst deactivation in a comprehensive way and encompasses the state of the art in the field of reactions catalyzed by zeolites. This particular choice is justified by the widespread use of molecular sieves in refining, petrochemicals and organic chemicals synthesis processes, by the large variety in the nature of their active sites (acid, base, acid-base, redox, bifunctional) and especially by their peculiar features, in terms of crystallinity, structural order and textural properties, which make them ideal models for heterogeneous catalysis. The aim of this book is to be a critical review in the field of zeolite deactivation and regeneration by collecting contributions from experts in the field which describe the factors, explain the techniques to study the causes and suggest methods to prevent (or limit) catalyst deactivation. At the same time, a selection of commercial processes and exemplar cases provides the reader with theoretical insights and practical hints on the deactivation mechanisms and draws attention to the key role played by the loss of activity on process design and industrial practice.
Over the past four decades, notable advancements in the theory and application of ion exchange science uncovered a wealth of knowledge that fueled new scientific pursuits and created synergies with myriad scientific endeavors. Today, pioneers continue to break new ground by synthesizing novel materials and merging the interdisciplinary fields of science and engineering. Now in its 20th volume, Ion Exchange and Solvent Extraction: A Series of Advances chronicles the ongoing changes that drive innovation in this important field. Beginning with a review of research studies that show how functionalized ion exchange polymers serve as supports to stabilize metal nanoparticles (MNPs) without forming larger than nano aggregates, the book describes the sorption of different gases from the air by ion exchange resins and fibrous ion exchangers and discusses the selective ion exchange technology capable of removing and recovering perchlorate quantitatively through stable isotope ratio analysis of chlorine and oxygen atoms, allowing for the forensic analysis of perchlorate origin in contaminated water. Later chapters demonstrate how numerical simulations coupled with small-scale bench-top experiments can help tailor particle size distribution and enhance the efficiency of each application, review dual-temperature ion exchange processes in which sorption and desorption are carried out solely by varying temperature, and present the preparation and characterization of a new composite material in which microparticles of clinoptilolite are embedded in a matrix of cross-linked chitosan, opening new opportunities for the natural biopolymer. The book concludes with the preparation, characterization, and field-level experience of an emerging class of "hybrid ion exchangers" that enhance the application opportunities of ion exchange resins. Highlighting the latest and most pivotal discoveries, the 20th volume of a field standard codifies the current state-of-the-art and lays the groundwork for the next generation of growth and expansion in the field of ion exchange.
The book presents concepts and equations of equilibrium thermodynamics or thermostatics. Key features that distinguish this book from others on chemical engineering thermodynamics are: a mathematical treatment of the developments leading to the discovery of the internal energy and entropy; a clear distinction between the classical thermodynamics of Carnot, Clausius and Kelvin and the thermostatics of Gibbs; an intensive/specific variable formalism from which the extensive variable formalism is obtained as a special case; a systematic method of obtaining the central equations of thermostatics with the use of the implicit/inverse function theorems and the chain rule. Please note: Taylor & Francis does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
A Practical Guide to Instrumental Analysis covers basic methods of instrumental analysis, including electroanalytical techniques, optical techniques, atomic spectroscopy, X-ray diffraction, thermoanalytical techniques, separation techniques, and flow analytical techniques. Each chapter provides a brief theoretical introduction followed by basic and special application experiments. This book is ideal for readers who need a knowledge of special techniques in order to use instrumental methods to conduct their own analytical tasks.
Synthetic Membranes and Membrane Separation Processes addresses both fundamental and practical aspects of the subject. Topics discussed in the book cover major industrial membrane separation processes, including reverse osmosis, ultrafiltration, microfiltration, membrane gas and vapor separation, and pervaporation. Membrane materials, membrane preparation, membrane structure, membrane transport, membrane module and separation design, and applications are discussed for each separation process. Many problem-solving examples are included to help readers understand the fundamental concepts of the theory behind the processes. The book will benefit practitioners and students in chemical engineering, environmental engineering, and materials science.
Published under the auspices of both IUPAC and its affiliated body, the International Association of Chemical Thermodynamics (IACT), this book will serve as a guide to scientists or technicians who use equations of state for fluids. Concentrating on the application of theory, the practical use of each type of equation is discussed and the strengths and weaknesses of each are addressed. It includes material on the equations of state for chemically reacting and non-equilibrium fluids which have undergone significant developments and brings up to date the equations of state for fluids and fluid mixtures. Applied Thermodynamics of Fluids addresses the needs of practitioners within academia, government and industry by assembling an international team of distinguished experts to provide each chapter. The topics presented in the book are important to the energy business, particularly the hydrocarbon economy and the development of new power sources and are also significant for the application of liquid crystals and ionic liquids to commercial products. This reference will be useful for post graduate researchers in the fields of chemical engineering, mechanical engineering, chemistry and physics.
As pharmaceutical companies strive to develop safer medicines at a lower cost, they must keep pace with the rapid growth of technology and research methodologies. Defying the misconception of process chemistry as mere scale-up work, Process Chemistry in the Pharmaceutical Industry, Vol. 2: Challenges in an Ever Changing Climate explores novel applications of synthetic, physical, and analytical chemistry in drug discovery and development. It offers an accurate depiction of the most up-to-date process research and development methods applied to synthesis, clinical trials, and commercializing drug candidates. The second installment in this progressive series, this volumereviews the latest breakthroughs to advance process chemistry, including asymmetric synthesis, crystallization, morphology, enzymatic intervention, green chemistry, macromolecules (monoclonal antibodies, biological molecules, polymers), enantioselectivity, organometallic chemistry, process analytical tools, chemical engineering controls, regulatory compliance, and outsourcing/globalization. It explores new approaches to synthetic processes, examines the latest safety methods and experiment design, and suggests realistic solutions to problems encountered in manufacturing and process development. Significant topics include atom economy, ease of synthesis, instrumentation, automization, quality control, cost considerations, green practices, and future trends. Jointly edited by the founder/president of Delphian Pharmaceuticals and the director of Chemical R&D at Pfizer, this book brings together contributions byreputed scientists, technologists, engineers, and professors from leading academic institutions, such as the Imperial College, UK, the University of Tokyo, ETH, Switzerland, the International University at Bermen, Germany, and the University of Connecticut, USA, and from principal pharmaceutical companies that include Merck, Bristol Myers Squibb, Pfizer, Novartis, Eli Lilly, Astrazeneca and DSM.
Complex multiscale systems such as combined free or porous flow regimes and transport processes governed by combined diffusion, convection and reaction mechanisms, which cannot be readily modeled using traditional methods, can be solved by multiscale or stabilized finite element schemes. Due to the importance of the described multiscale processes in applications such as separation processes, reaction engineering and environmental systems analysis, a sound knowledge of such methods is essential for many researchers and design engineers who wish to develop reliable solutions for industrially relevant problems. The main scope of this book is to provide an authoritative description of recent developments in the field of finite element analysis, with a particular emphasis on the multiscale finite element modeling of transport phenomena and flow problem.
The applications of solvent extraction (SX) and liquid membranes (LM) span chemistry, metallurgy, hydrometallurgy, chemical/mineral processing, and waste treatment-making it difficult to find a single resource that encompasses fundamentals as well as advanced applications. Solvent Extraction and Liquid Membranes: Fundamentals and Applications in New Materials draws together a diverse group of internationally recognized experts to highlight key scientific and technological aspects of solvent extraction that are critical to future work in the field. The first chapters identify relevant thermodynamics, kinetics, and interfacial behavior principles and introduce methods for calculating extraction equilibria and kinetic parameters. The next chapters focus on engineering and technological aspects of various industrial processes and plant applications, including optimization and modeling tools and calculations. The final chapters examine new materials for metal extraction and separations, covering preparation and application processes for organic and inorganic sorbents, solid polymeric extractants, and solvent impregnated resins. Solvent Extraction and Liquid Membranes offers a comprehensive review of the most important principles, calculations, and procedures involved in this widely applicable separation technique. The book's pedagogical approach will benefit students and researchers in the field as well as working scientists and engineers who wish to apply solvent extraction to their own applications.
Bioethanol and Natural Resources: Substrates, Chemistry and Engineered Systems provides a comprehensive review of feedstocks, physiochemical and biological pretreatments, molecular substrates, cellulolytic and ligninolytic enzymes, and advanced technologies for producing bioethanol. Although this book provides a review of first-generation bioethanol feedstocks, chemistry, and processes, there is an emphasis on second-generation "cellulosic" ethanol production. With rapid advances in biofuels technologies and the continued global dependency on unsustainable extraction of fossil fuels, this text is timely. Although it is intended to be used as a supplemental text for advanced undergraduate or graduate level courses, the book is accessible to a non-academic audience. This book provides a unique opportunity to understand bioethanol production from the basic concepts and processes to the most cutting-edge technologies under development.
Aerobiology is the study of airborne particles that have an impact on humans and other organisms. Every day, we are exposed to airborne particles, including "natural" particles such as pollen, bacteria, and fungi, and "unnatural" particles, such as asbestos fibers and noxious chemicals. Aerobiology highlights the current interests in this field, primarily the ecology and distribution of airborne particles and their effects on health.
The proposed book focusses on metal mediated/catalyzed "controlled/living radical polymerization" (CRP/LRP) methods. It surveys a wide variety of catalyzed polymerization reactions, making it essentially a "one stop" review in the field. A significant contribution to polymer science is "metathesis polymerization" discovered by Grubbs and others. The book will cover various metathesis polymerization methods and implications in polymer industry.
The book contains the very latest information on all aspects of heat capacities related to liquids and vapours, either pure or mixed. The chapters, all written by knowledgeable experts in their respective fields, cover theory, experimental methods, and techniques (including speed of sound, photothermal techniques, brillouin scattering, scanning transitiometry, high resolution adiabatic scanning calorimetry), results on solutions, liquids, vapours, mixtures, electrolytes, critical regions, proteins, liquid crystals, polymers, reactions, effects of high pressure and phase changes. Experimental methods for the determination of heat capacities as well as theoretical aspects, including data correlation and prediction, are dealt with in detail. Of special importance are the contributions concerning heat capacities of dilute solutions, ultrasonics and hypersonics, critical behaviour and the influence of high pressure. This new book covers the wide range of topics in the field of heat capacities and vapours and as such is a key point of reference for undergraduates and graduates alike as well as researchers, academics and anyone working in the field or related areas.
Providing industry and academia with the ways of getting products approved by the FDA and the means of servicing expanding markets, this work presents and reviews techniques for testing antibacterial compounds. It discusses and illustrates the most effective methods for testing efficacy and safety of preinjection and preoperative washes, healthcare and food service workers' handwashes, and surgical scrubs.
The book deals with the environmentally friendly cleaning materials functionalized with TiO2, a widely known semiconductor giving rise to redox reactions under artificial or solar irradiation. The role of Titanium dioxide in the worldwide community is introduced first. The fundamental working principles of heterogeneous photocatalysis follow and a critical section on the semiconductor bulk and surface properties open the way to the differences between TiO2 blend features with respect to analogous thin film layouts. Then follows the main section of the book which deals with the techniques applied to manufactured commercial devices, ranging from glasses to textiles and from concrete and other construction materials to paintings. Also road asphalt and other devices, such as photocatalytic air conditioning machines are outlined. Last generation materials, not yet commercialized, and the deposition techniques applied to prepare them are also widely discussed. The final part of the book covers the difficult and modern topic of standardization and comparison of performance of photocatalytic processes and in particular the guidelines proposed by various worldwide organizations for standardization are discussed. The book covers the general matters as well as the practical applications with the supporting methods discussed in detail. This book brings together a team of highly experienced and well-published experts in the field, providing a comprehensive view of the applications of supported titanium dioxide.
During the upgrading of heavy petroleum, asphaltene is the most problematic impurity since it is the main cause of catalyst deactivation and sediments formation. Exploring many aspects related to asphaltenes composition and conversion, Asphaltenes: Chemical Transformation during Hydroprocessing of Heavy Oils highlights the various changes that these heavy and complex molecules undergo during catalytic hydroprocessing. After defining and characterizing asphaltene structure, the book examines the composition of petroleum and the processes and catalysts for upgrading heavy oils. It then details the characterization of asphaltenes after hydroprocessing and the effect of reaction conditions on their structures. The authors also analyze the deactivation and characterization of spent hydroprocessing catalysts as well as the role played by asphaltenes. They cover sediments formation during hydroprocessing and the role of asphaltenes on it. The final chapters describe the hydrocracking and kinetics of asphaltenes and the fractionation of heavy crudes and asphaltenes. Due to the increasing production of heavy crude oils, asphaltene has become one of the most studied molecules. This book provides a deep understanding of how asphaltenes transform during hydroprocessing, offering insight on designing catalysts and processing for the upgrading of heavy oils.
Understanding the biochemistry of food is basic to all other research and development in the fields of food science, technology, and nutrition, and the past decade has seen accelerated progress in these areas. Advances in Food Biochemistry provides a unified exploration of foods from a biochemical perspective. Featuring illustrations to elucidate molecular concepts throughout the text, this volume examines a range of issues on the food spectrum, including:
Dr. Fatih Yildiz has published an extensive body of research and has worked on food and nutrition science projects with the FAO, UNIDO, UNICEF, and NATO. Recently he received the Ambassador for Turkey Award from the European Federation of Food Science and Technology. Dr. Yildiz and the contributors to this volume have brought together their decades of experience and expertise to provide a top-notch resource for food science and policy professionals and advanced students on the cutting edge of food research.
Held in Singapore from 9 to 11 October 2009, the 2009 International Conference on Chemical, Biological and Environmental Engineering (CBEE 2009) aims to provide a platform for researchers, engineers, academicians as well as industrial professionals from all over the world to present their research and development activities in chemical, biological and environmental engineering. Conference delegates will also have the opportunity to exchange new ideas and application experiences, establish business or research relations and find global partners for future collaboration.
Billions of dollars are spent annually for the replacement of corroded structures, machinery, and components. Premature failure of bridges or structures due to corrosion can also result in human injury, loss of life, and collateral damage. Written by an authority in corrosion science, Fundamentals of Corrosion: Mechanisms, Causes, and Preventative Methods comprehensively describes the causes of corrosion-and the means to limit or prevent it. Engineers, designers, architects, and all those involved with the selection of construction materials will relish a reference that provides such a thorough yet basic illustration of the causes, prevention, and control of corrosion. This reference explores: Mechanisms and forms of corrosion Methods of attack on plastic materials Causes of failure in protective coatings, linings, and paints Development of new alloys with corrosion-resistant properties Exposure to the atmosphere is one of the largest problems and biggest causes of corrosion that engineers and designers face in construction. It has been further estimated that the cost of protection against atmospheric corrosion accounts for approximately half the total cost of all corrosion protection methods. This book places special emphasis on atmospheric exposure and presents vital information regarding the design of structures, automobiles, household plumbing, manufacturing equipment, and other entities, as well as the effects of de-icing chemicals on highways and bridges.
The Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications, Second Edition provides detailed information on membrane separation technologies from an international team of experts. The handbook fills an important gap in the current literature by providing a comprehensive discussion of membrane applications in the chemical, food, pharmaceutical, and biotechnology industries as well as in the treatment of toxic industrial effluents. This revised second edition has been updated and expanded with discussions of new membrane products and processes and novel applications in engineering, life sciences, and energy conversion. It also includes new chapters in the field of membrane science and technology covering recent advances in RO and UF, ionic liquids, nanotechnology, roles of membrane in power generation, updates on fuel cells, new membrane extraction configuration, and other important topics. The handbook is equally suited for the newcomer to the field as it is for process engineers and research scientists (membranologists/membrane experts) who are interested in obtaining more advanced information about specific applications. It provides readers with a comprehensive and well-balanced overview of the present state of membrane science and technology. |
You may like...
A Practical Treatise on the Manufacture…
C (Carl) 1838-1921 Deite, William T. (William Theodore) Brannt
Hardcover
R978
Discovery Miles 9 780
Green Technologies for the Environment
Sherine Obare, Rafael Luque
Hardcover
R5,550
Discovery Miles 55 500
Nanoscale Materials in Chemistry…
Larry Erikson, Ranjit Koodali, …
Hardcover
R5,548
Discovery Miles 55 480
Modern Applications in Membrane Science…
Isabel Escobar, Bart Van der Bruggen
Hardcover
R5,555
Discovery Miles 55 550
|