Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Chemical engineering
Thoroughly revised and reorganized, the second edition of Interfacial Forcesin Aqueous Media examines the role of polar interfacial and noncovalent interactions among biological and nonbiological macromolecules as well as biopolymers, particles, surfaces, cells, and both polar and apolar polymers. The book encompasses Lifshitz-van der Waals and electrical double layer interactions, as well as Lewis acid-base interactions between colloidal entities in polar liquids such as water. New in this Edition: Four previously unpublished chapters comprising a new section on interfacial properties and structure of liquid water New material throughout the text on the interplay between macroscopic-scale repulsions and microscopic-scale attractions in protein adsorption A new chapter covering interfacial tension determination A new chapter examining the kinetics and energetics of protein adsorption onto metal oxide surfaces Dr. van Oss describes the nature of the various manifestations of hydrophobic interactions as well as of hydration pressure and analyzes the measurement of the contact angles that result when liquid droplets are deposited on flat solids. He also covers coacervation and complex coacervation, discusses the determination methods of electrokinetic potentials, and treats some of the lesser-known properties of water, such as cluster formation and the hydrophobicity of the water-air interface. Principally involved in multiple applications of colloids and interface science for more than 50 years, Carel Jan van Oss is Editor Emeritus of Immunological Investigations and Founding Editor of Preparative Biochemistry and Biotechnology and of Separation and Purification Reviews. He is an editorial advisor for the Journal of Dispersion Science and Technology. In addition to these Taylor & Francis journals, Dr. van Oss is the author, coauthor, or editor of eleven books, including Colloid & Surface Properties of Clays and Related Minerals (2002), and over 350 scientific papers and chapters.
In spite of the apparent simplicity of silica's composition and structure, scientists are still investigating fundamental questions regarding the formation, constitution, and behavior of colloidal silica systems. Colloidal Silica: Fundamentals and Applications introduces new information on colloid science related to silica chemistry as well as theoretical and experimental aspects of significant areas of colloidal silica science and technology. This resource is dedicated to helping researchers find new uses of silica and answers to practical problems as its industrial use continues to grow steadily in traditional and novel areas. Written by leading silica scientists around the world, this book reflects developments in the field since silica scientist Ralph K. Iler published his authoritative book on silica chemistry in 1979. It discusses properties and methods of characterization, synthesis, and preparation of silica in terms of industrial applications. Following an analysis of the surface chemistry of various silicas, the book explores methods for measuring particle size and useful characterization techniques for determining structure, stability, and reactivity. The authors then focus on various studies, analytical methods, and current applications involving silica gels and powders, silica coatings, colloidal silica, and sol-gel technology. Colloidal Silica: Fundamentals and Applications features up-to-date material relating to fields as diverse as catalysis, metallurgy, electronics, glass, ceramics, paper and pulp technology, optics, elastomers, food, health care, and industrial chromatography. It is ideal for scientists interested in silica chemistry and physics as well as those not familiar with the subject.
Emulsions and Emulsion Stability, Second Edition provides comprehensive coverage of both theoretical and practical aspects of emulsions. The book presents fundamental concepts and processes in emulsified systems, such as flocculation, coalescence, stability, precipitation, deposition, and the evolution of droplet size distribution. The book explains how to predict emulsion stability and determine droplet sizes in a variety of emulsion systems. It discusses spontaneous emulsification and the formation of "nanoemulsions" as well as droplet-droplet interactions in different electrical fields (electrocoalescence), and the formulation, composition, and preparation variables that contribute to the inversion in emulsion systems. Several chapters emphasize applications such as emulsification encountered in oil spills, asphalt, chemical flooding, acid crude oils, and large-scale industrial wastewater treatment. The survey of experimental characterization methods highlights the importance of thin liquid films in colloidal systems and assesses different NMR applications, ultrasound characterization, video microscopy, and other on-line instrumentation. The last chapter in the book deals with obtaining conductivity measurements as an alternative to online instrumentation. Completely revised and expanded, this second edition of Emulsions and Emulsion Stability offers a well-rounded collection of knowledge that is applicable to all academic and industrial scientists and researchers in the fields of surfactant and emulsion science.
Interest in structured catalysts is steadily increasing due to the already proven, as well as potential, advantages of these catalysts. Updating the comprehensive coverage of the first edition published in 1998 with the latest science and applications, Structured Catalysts and Reactors, Second Edition gives detailed information on all aspects of structured catalysts and reactors, including: materials, mass transfer, selectivity, activity, and stability; catalyst preparation, design, and characterization; process development; modeling and optimization; reactor design; and operation costs and considerations. The book first examines how monolithic catalysts are used to clean exhaust gas from gasoline engines, treat industrial off-gases, burn fuels in commercial settings, and synthesize chemicals in two- and three-phase processes. It discusses configurations, microstructure, physical properties, and manufacture of ceramic and metallic monoliths before directing its focus to arranged catalysts and structured packings in terms of mass transfer. The book then explores catalytically active membranes and filters, featuring metallic membranes, permeation mechanisms, preparation and modeling, commercial membranes, and the latest applications, such as zeolitic membranes. Finally, several chapters present techniques for incorporating catalytic species into the structured catalyst support and controlling catalyst nanoporosity. This book conveys the scientific as well as economic advantages of using these unconventional catalytic techniques. With over 1500 references, tables, drawings, and photographs, as well as in-depth discussions and a new approach to catalytic processes, Structured Catalysts and Reactors, Second Edition is an essential reference for anyone working with or studying catalysis.
In the past two decades, new modeling efforts have gradually incorporated more molecular and structural detail in response to environmental and technical interests. Molecular Modeling in Heavy Hydrocarbon Conversions introduces a systematic molecule-based modeling approach with a system of chemical engineering software tools that can automate the entire model building, solution, and optimization process. Part I shows how chemical engineering principles provide a rigorous framework for the building, solution, and optimization of detailed kinetic models for delivery to process chemists and engineers. Part II presents illustrative examples that apply this approach to the development of kinetic models for complex process chemistries, such as heavy naphtha reforming and gas oil hydroprocessing. Molecular Modeling in Heavy Hydrocarbon Conversions develops the key tools and best possible approaches that process chemists and engineers can use to focus on the process chemistry and reaction kinetics for performing work that is repetitive or prone to human-error accurately and quickly.
Providing in-depth coverage of the technologies and various approaches, Luminous Chemical Vapor Deposition and Interface Engineering showcases the development and utilization of LCVD procedures in industrial scale applications. It offers a wide range of examples, case studies, and recommendations for clear understanding of this innovative science. The book comprises four parts. Part 1 describes the fundamental difference between glow discharge of an inert gas and that of an organic vapor, from which the concepts of Luminous Gas Phase derive. Part 2 explores the various ways of practicing Luminous Vapor Disposition and Treatment depending on the type and nature of substrates. Part 3 covers some very important aspects of surface and interface that could not have been seen clearly without results obtained by application of LCVD. Part 4 offers some examples of interface engineering that show very unique aspects of LCVD interface engineering in composite materials, biomaterial surface and corrosion protection by the environmentally benign process. Timely and up-to-date, the book provides broad coverage of the complex relationships involved in the interface between a gas/solid, liquid/solid, and a solid/solid. The author presents a new perspective on low-pressure plasma and describes key aspects of the surface and interface that could not be shown without the results obtained by LCVD technologies. Features Provides broad coverage of complex relationships involved in interface between a gas/solid, a liquid/solid, and a solid/solid Addresses the importance of the initial step of creating electrical glow discharge Describes the principles of creating chemically reactive species and their growth in the luminous gas phase Focuses on the nature of surface-state of solid and on the creation of imperturbable surface-state by the contacting phase or environment, which is vitally important in creating biocompatible surface, providing super corrosion protection of metals by environmentally benign processes, etc. Offers examples on how to use LCVD in the interface engineering process Presents a new view on low-pressure (low-temperature) plasma and emphasizes the importance of luminous gas phase and chemical reactions that occur in the phase About the author: Dr. Yasuda is one of the pioneers who explored low-pressure plasma for surface modification of materials and deposition of nano films as barrier and perm-selective membranes in the late 1960s. He obtained his PhD in physical and polymer chemistry working on transport properties of gases and vapors in polymers at State University of New York, College of Environmental Science and Forestry at Syracuse, NY. He has over 300 publications in refereed journals and books, and is currently a Professor Emeritus of Chemical Engineering, and Director, Center for Surface Science & Plasma Technology, University of Missouri-Columbia, and is actively engaged in research on the subjects covered by this book.
An in-depth review of important preparative methods for the synthesis and chemical modification of polymers, this authoritative second edition examines the advantages and limitations of various polymerization applications and procedures. It features new approaches and innovative strategies from the most prominent industry and academic laboratories, reflecting the burgeoning role of polymers in modern science and technology. The book analyzes biodegradable polymers for biomedical applications; investigates the use of polyolefins, polymeric dienes, aromatic polyethers, polymides, and metal-containing macromolecules; and covers polymers of acrylic acid, methacrylic acid, and maleic acid.
At the interface of chemical industry operations, equipment manufacturer input, and the scientific literature, Industrial Crystallization of Melts explores and explains melt crystallization and purification in the industrial arena. This comprehensive account details the orderly conversion of melts into solid, salable end materials and procedures for purification by remelting; summarizes key theoretical concepts relating to crystalline matter and instationary heat transfer; and surveys the equipment available for specific processes. It also offers over 100 tested equations, as well as clear-cut methods for handling organic melts that call for special crystallization provisions.
Electrical Properties of Polymers describes the electric phenomena responsible for determining the chemical and supramolecular structure of polymers and polymeric materials. The authors explore the properties of quasi-static dipoles, reviewing Brownian motion, Debye theory, Langevin and Smoluchowski equations, and the Onsager model. This reference displays Maxwell and entropy equations, along with several others, that depict the thermodynamics of dielectric relaxation. Featuring end-of-chapter problems and useful appendices, the book reviews molecular dynamics simulations of dynamic dielectric properties and inspects mean-square dipole moments of gases, liquids, polymers, and fixed conformations.
Catalytic Naphtha Reforming, Second Edition presents modern, crystal-clear explanations of every aspect of this critical process for generating high-octane reformate products for gasoline blending and production of benzene, toluene, and xylene (BTX) aromatics. The book details the chemistry of naphtha reforming, the preparation and characterization of catalysts, and the very latest commercial technologies and industrial applications. With more than 300 tables and figures, it addresses the development of new catalysts and revamp process improvements propelled by regulations on sulfur, benzene, and oxygenate content in gasoline and refinery pressure to maximize utilization of existing assets.
Understanding the mechanisms associated with metal complexes and the sequestering metal contaminants in the environment is essential for effective remediation. Heavy Metal Release in Soils describes and quantifies desorption/release kinetics and dissolution reactions in the release of heavy metals from soil. The book focuses on: New techniques - microscopic surface techniques, NMR and electrophoresis, XAFS, SFM, and time-resolved ATR-FTIR Theoretical analysis and kinetic approaches - adsorption/desorption hysteresis, competitive sorption and transport, multi-component models, speciation kinetics, isotherms and soil and metal parameters, and the role of soil properties on transport Applications - arsenic speciation and mobility in contaminated soils, modeling activity of CD, Zn, and Cu in contaminated soils, and in situ chemical immobilization A timely addition to the literature, this book highlights the desorption/release mechanisms for the purpose of resolving remediation dilemmas in contaminated environments. It gives you the added advantage of case studies at both the microscopic and macroscopic scales, and provides both experimental and numerical investigations. With contributions from an international panel of authors, Heavy Metals Release in Soils fills a gap in the current literature concerned with subsurface contaminant fate and transport processes.
This comprehensive handbook provides up-to-date knowledge and practical advice from established authorities in aerosol science. It covers the principles and practices of bioaerosol sampling, descriptions and comparisons of bioaerosol samplers, calibration methods, and assay techniques, with an emphasis on practicalities, such as which sampler to use and where it should be placed. The text also offers critiques concerning handling the samples to provide representative and meaningful assays for their viability, infectivity, and allergenicity. A wide range of microbes-viz., viruses, bacteria, fungi and pollens, and their fragments-are considered from such perspectives. Bioaerosols Handbook is divided into four parts, providing a wide-ranging reference work, as well as a practical guide on how best to sample and assay bioaerosols using current technology.
Lead Poisoning discusses one of the most critical and preventable environmentally induced illnesses. The actual toll lead poisoning takes on society cannot be measured fully due to the "silent" nature of health effects, such as subtle intellectual deficits and neurological damage, caused by chronic low-level exposures. This book covers every major topic on the subject, including lead poisoning in children, sources of contamination, state-of-the-art sampling and analytical measurement methods, the newest studies on low-cost abatement methods, and much more. This reference is the most comprehensive presentation of issues currently available under one cover. The text is divided into three major parts. Part I provides insights from studies assessing lead exposures from paint, dust, soil, and lead battery recycling operations. The second part is a unique collection of strategic federal policy statements from the U.S. EPA, HUD, and HEW-CDC. It details the National Implementation Plan as well as a local government's efforts to provide low-cost effective risk communication and public outreach to the community. The next part offers seven chapters on analytical issues in the measurement of lead in blood, paint, dust, and soils. Part IV, Sampling Methods and Statistical Issues, rounds out the technical portion of the volume. The relationships among lead levels in biological and environmental media are investigated and the interpretive problems discussed. The use of multi-element analysis of environmental samples as an approach to investigate sources is described. The book finishes with its most unique feature-OPPT's Check Our Kids for Lead Program, one organization's effort to empower its employees to make a personal difference in confronting the problem of lead poisoning in children. The Program serves as a model for other government organizations (federal, state, and local), university and community organizations, and corporations to educate them and take personal and corporate responsibility for addressing this important and environmental health problem.
The book provides insight into the working of clays and clay minerals in speeding up a variety of organic reactions. Clay minerals are known to have a large propensity for taking up organic molecules and can catalyse numerous organic reactions due to fine particle size, extensive surface area, layer structure, and peculiar charge characteristics. They can be used as heterogeneous catalysts and catalyst carriers of organic reactions because they are non-corrosive, easy to separate from the reaction mixture, and reusable. Clays and clay minerals have an advantage over other solid acids as they are abundant, inexpensive, and non-polluting.
Petroleum refining involves refining crude petroleum as well as producing raw materials for the petrochemical industry. This book covers current refinery processes and process-types that are likely to come on-stream during the next three to five decades. The book includes (1) comparisons of conventional feedstocks with heavy oil, tar sand bitumen, and bio-feedstocks; (2) properties and refinability of the various feedstocks; (3) thermal processes versus hydroprocesses; and (4) the influence of refining on the environment.
This book covers recent advancements in the field of polymer science and technology. Frontiers areas, such as polymers based on bio-sources, polymer based ferroelectrics, polymer nanocomposites for capacitors, food packaging and electronic packaging, piezoelectric sensors, polymers from renewable resources, superhydrophobic materials and electrospinning are topics of discussion. The contributors to this book are expert researchers from various academic institutes and industries from around the world.
An Introduction to High-Pressure Science and Technology provides you with an understanding of the connections between the different areas involved in the multidisciplinary science of high pressure. The book reflects the deep interdisciplinary nature of the field and its close relationship with industrial applications. Thirty-nine specialists in high-pressure research guide you through the process of learning why pressure is considered a powerful scientific and technological tool, how pressure can be introduced into the laboratory, and which problems can be solved using this thermodynamic variable. The book presents basic thermodynamic equations and state-of-the-art computational tools. It shows how many experimental techniques, when combined with pressure, are powerful sources of information for understanding natural phenomena and reveal clear paths for the design of novel materials. The book also addresses the responses of microorganisms, Earth constituents, and icy planets to pressure.
Handbook of Refinery Desulfurization describes the operation of the various desulfurization process units in a petroleum refinery. It also explains the processes that produce raw materials for the petrochemical industry. It illustrates all the possible processes to lower the sulfur contents in petroleum and its fractions to decrease emissions of sulfur oxides. This book introduces you to desulfurization concepts, including biodesulfurization, as well as technology, giving guidance on how to accomplish desulfurization in various refining processes. It contains background chapters on the composition and evaluation of feedstocks and includes diagrams and tables of feedstocks and their respective produce. It also outlines how to decide which method should be employed to remove sulfur from different feedstocks. A practical and thorough discussion of the field, Handbook of Refinery Desulfurization gives you a strong grasp of the various processes involved with industrial desulfurization while giving you pointers on which procedures to use under certain conditions.
This new edition of the Handbook of Surface and Colloid Chemistry informs you of significant recent developments in the field. It highlights new applications and provides revised insight on surface and colloid chemistry's growing role in industrial innovations. The contributors to each chapter are internationally recognized experts. Several chapters represent new research areas while others provide updates on important areas of the field. Reduced in length, the new edition presents a more concise volume for quicker understanding of the physical principles necessary for application. It includes extensive references for understanding related phenomena, providing a reference point to broaden knowledge of theoretical and practical functions. It also illustrates surface and colloid chemistry's relevance in the struggle against global issues such as energy resources, environmental control, transportation, housing, biotechnology, health, medicine, drinking water, and food production. The Handbook of Surface and Colloid Chemistry, Fourth Edition is an invaluable resource for staying informed on progress in the field. It keeps you current with theories and their applications to the development of technology so that you can find more effective solutions to vital problems facing us today and tomorrow.
Application as well as detection of different chemicals plays an important role in the progress of modern science and technology. The beauty of various characteristics of materials and the inherent logic behind their working mechanisms can be wisely utilized for sensing different chemicals. The mechanisms as well as performances of different materials viz. carbon nanotube, graphene, metal oxides, biomaterials, luminescent metal-organic frameworks, hydrogels, textiles, quantum dots, ligands, crown ethers etc. for identification of different chemicals has been discussed here. This book would be a valuable reference to select suitable materials for possible use in chemical sensors.
Membrane Contactors: Fundamentals, Applications and Potentialities,
Volume 11 covers new operations that could be efficiently used to
improve the performance of a variety of industrial production
cycles in applications ranging from biotechnology to agrofood. This
book focuses on the basic "principles of work": required membrane
materials and properties; major operating parameters; the
importance of module configuration and design and; the performance
of membrane contactors in specific processes. The authors dynamic
approach to this subject makes Membrane Contactors: Fundamentals,
Applications and Potentialities, Volume 11 the most comprehensive
book currently available on all aspects related to the 'membrane
contactor world.
Surface and colloid chemistry principles impact many aspects of our daily lives, ranging from the cleaners and cosmetics we use to combustion engines and cement. Exploring the range of this field of study, Surface and Colloid Chemistry provides a detailed analysis of its principles and applications and demonstrates how they relate to natural phenomena and industrial processes. Surface and colloid chemistry at work in nature and industry: rain drops combustion engines soap bubbles foam food products air pollution waste-water treatment washing and cleaning cosmetics painting and printing oil and gas production oil spills plastics and polymers biology and pharmaceuticals milk products cement adhesive coal The book begins with an introduction to surfaces and colloids. It describes basic considerations regarding liquids and capillarity, and examines the liquid-solid interface phenomena. It explores the physicochemical properties of surfactants, Langmuir-Blodgett films, adsorption on solid surfaces, and adsorption as it relates to cleaning processes. Then the author examines colloidal systems and thin liquid films before moving on to emulsion science and technology. The final chapter provides examples of applications in science and a range of industries. Examples and Illustrations Integrating real-world examples throughout the text, this volume stimulates readers to consider both fundamental theory and industrial applications. More than 100 figures elucidate the concepts described in the text. Sample questions and answers are provided where appropriate, along with detailed data and discussions. Pertinent references are offered to facilitate further study.
This text examines the thermal and catalytic processes involved in the refining of petroleum including visbreaking, coking, pyrolysis, catalytic cracking, oligomerization, alkylation, hydrofining, hydroisomerization, hydrocracking, and catalytic reforming. It analyzes the thermodynamics, reaction mechanisms, and kinetics of each process, as well as the effects of operating conditions and reactor design on process performance and product quality. This is a valuable resource for chemists who wish to improve their knowledge of some of the real world issues that must be addressed in hydrocarbon conversion. Topics include processes on metallic catalysts, processes using bifunctional catalysts, and catalytic reforming.
Green chemistry is the design of chemical products and processes that reduce or eliminate the use or generation of hazardous substances. Green polymer chemistry is an extension of green chemistry to polymer science and engineering. Developments in this area have been stimulated by health and environmental concerns, interest in sustainability, desire to decrease the dependence on petroleum, and opportunities to design and produce "green" products and processes. Major advances include new uses of biobased feedstock, green reactions, green processing methodologies, and green polymeric products. A current feature of green polymer chemistry is that it is both global and multidisciplinary. Thus, publications in this field are spread out over different journals in different countries. Moreover, a successful research effort may involve collaborations of people in various disciplines, such as organic chemistry, polymer chemistry, material science, chemical engineering, biochemistry, molecular biology, microbiology, enzymology, toxicology, environmental science, and analytical chemistry. This book combines the major interdisciplinary research in this field and is targeted for scientists, engineers, and students, who are involved or interested in green polymer chemistry. These may include chemists, biochemists, material scientists, chemical engineers, microbiologists, molecular biologists, enzymologists, toxicologists, environmental scientists, and analytical chemists. It can be a textbook for a course on green chemistry and also a reference book for people who need information on specific topics involving biocatalysis and biobased materials.
This book summarizes the various microfluidic-based approaches for single-cell capture, isolation, manipulation, culture and observation, lysis, and analysis. Single-cell analysis reveals the heterogeneities in morphology, functions, composition, and genetic performance of seemingly identical cells, and advances in single-cell analysis can overcome the difficulties arising due to cell heterogeneity in the diagnostics for a targeted model of disease. This book provides a detailed review of the state-of-the-art techniques presenting the pros and cons of each of these methods. It also offers lessons learned and tips from front-line investigators to help researchers overcome bottlenecks in their own studies. Highlighting a number of techniques, such as microfluidic droplet techniques, combined microfluidics-mass-spectrometry systems, and nanochannel sampling, it describes in detail a new microfluidic chip-based live single-cell extractor (LSCE) developed in the editor's laboratory, which opens up new avenues to use open microfluidics in single-cell extraction, single-cell mass spectrometric analysis, single-cell adhesion analysis and subcellular operations. Serving as both an elementary introduction and advanced guidebook, this book interests and inspires scholars and students who are currently studying or wish to study microfluidics-based cell analysis methods. |
You may like...
Biomass and Bioenergy Solutions for…
Ashok Kumar Rathoure, Shankar Mukundrao Khade
Hardcover
R6,531
Discovery Miles 65 310
Fermented Liquors - a Treatise on…
Lewis 1805-1876 Feuchtwanger
Hardcover
R826
Discovery Miles 8 260
Green Technologies for the Environment
Sherine Obare, Rafael Luque
Hardcover
R5,414
Discovery Miles 54 140
Nanoscale Materials in Chemistry…
Larry Erikson, Ranjit Koodali, …
Hardcover
R5,412
Discovery Miles 54 120
|