![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > General
Particulate discrete element analysis is becoming increasingly popular for research in geomechanics as well as geology, chemical engineering, powder technology, petroleum engineering and in studying the physics of granular materials. With increased computing power, practising engineers are also becoming more interested in using this technology for analysis in industrial applications. This is the first single work on Discrete Element Modelling (DEM) providing the information to get started with this powerful numerical modelling approach. Written by an independent author with experience both in developing DEM codes and using commercial codes, this book provides the basic details of the numerical method and the approaches used to interpret the results of DEM simulations. Providing a basic overview of the numerical method, Particulate Discrete Element Modelling discusses issues related to time integration and numerical stability, particle types, contact modelling and boundary conditions. It summarizes approaches to interpret DEM data so that users can maximize their insight into the material response using DEM. The aim of this book is to provide both users and prospective users of DEM with a concise reference book that includes tips to optimize their usage. Particulate Discrete Element Modelling is suitable both for first time DEM analysts as well as more experienced users. It will be of use to professionals, researchers and higher level students, as it presents a theoretical overview of DEM as well as practical guidance on running DEM simulations and interpreting DEM simulation data.
The steady growth in the number of vehicles on the road, heavy reliance on coal, use of dirty fuels for residential combustion, and extensive open burning are some of the major factors leading to the progressive deterioration of air quality in developing countries in Asia. And despite efforts to establish and implement air quality measurement systems, the development of infrastructure, environmental technology, and management practices continues to lag behind the rate of emission increase. Based on ten years of coordinated research, Integrated Air Quality Management: Asian Case Studies discusses technical and policy tools for the integrated air quality management of developing countries in Asia. The book begins with an overview of major issues of air quality management practices in developing Asia and potential approaches to reduce pollution, including opportunities for integration of air quality improvement and climate migration strategies. It covers the methodology and results of fine particulate matter monitoring using traditional filter-based and satellite monitoring techniques. It examines the applications of a 3D dispersion modeling tool for urban and regional air quality management focusing on surface ozone, fine particulate matter, and acid deposition. The final chapters discuss innovative control technologies for gaseous air pollutants and illustrate the integrated air quality management in developing Asia through case studies for target source categories including agricultural residue field burning, vehicle emissions, brick kilns, and industrial VOC emission. Illustrated with case studies, this book presents an integrated air quality management methodology that employs technical and policy tools to achieve air quality goals. It includes technical information and policy recommendations based on the outcomes of several multi-year air quality research programs coordinated by the Asian Institute of Technology. The text combines fundamental information and advanced knowledge useful to large audiences dealing with subjects of integrated air quality management.
Provides a Balance between the Mathematical and Physical Aspects and the Engineering Applications Written for engineering and science students, Mechanics of Groundwater in Porous Media explains groundwater from both a mathematical and qualitative standpoint. The book builds up the theory of groundwater flow starting from basic physics and geometric intuition, and on to applied practice through real-world engineering problems. It includes graphical illustrations as well as solved illustrative problems throughout the text. Considers the Steady-State Motion of Groundwater The book starts off by introducing the overall picture of groundwater, its relationship with the hydrological cycle, and other terminology used in the mechanics of groundwater flow though porous means. It presents a synopsis of basic definitions, concepts, and the fundamental principles of fluid mechanics and soil mechanics, which are necessary prerequisites for an adequate understanding of the book's core material. The engineering applications are deducted from geometric and physical reasoning, with a minimum use of mathematical abstraction. Mechanics of Groundwater in Porous Media is written primarily to serve as a textbook for senior undergraduate and upper-level graduate students in civil and environmental engineering, environmental science, hydrogeology, and geology, as well as a resource for practicing engineers.
Meshless, or meshfree methods, which overcome many of the limitations of the finite element method, have achieved significant progress in numerical computations of a wide range of engineering problems. A comprehensive introduction to meshless methods, Meshless Methods and Their Numerical Properties gives complete mathematical formulations for the most important and classical methods, as well as several methods recently developed by the authors. This book also offers a rigorous mathematical treatment of their numerical properties-including consistency, convergence, stability, and adaptivity-to help you choose the method that is best suited for your needs. Get Guidance for Developing and Testing Meshless Methods Developing a broad framework to study the numerical computational characteristics of meshless methods, the book presents consistency, convergence, stability, and adaptive analyses to offer guidance for developing and testing a particular meshless method. The authors demonstrate the numerical properties by solving several differential equations, which offer a clearer understanding of the concepts. They also explain the difference between the finite element and meshless methods. Explore Engineering Applications of Meshless Methods The book examines how meshless methods can be used to solve complex engineering problems with lower computational cost, higher accuracy, easier construction of higher-order shape functions, and easier handling of large deformation and nonlinear problems. The numerical examples include engineering problems such as the CAD design of MEMS devices, nonlinear fluid-structure analysis of near-bed submarine pipelines, and two-dimensional multiphysics simulation of pH-sensitive hydrogels. Appendices supply useful template functions, flowcharts, and data structures to assist you in implementing meshless methods. Choose the Best Method for a Particular Problem Providing insight into the special features and intricacies of meshless methods, this is a valuable reference for anyone developing new high-performance numerical methods or working on the modelling and simulation of practical engineering problems. It guides you in comparing and verifying meshless methods so that you can more confidently select the best method to solve a particular problem.
What makes this book unique is a specific focus on aluminum recovery, rather than just recycling in general. It also offers an integrated discussion of scrap recovery and re-melting operations and includes economic as well as technical elements of recycling. Important topics include a discussion of the scrap aluminum marketplace and how secondary aluminum is collected and sorted, the design and operation of furnaces for melting scrap, the refining of molten aluminum, and the recovery and processing of dross from re-melting operations. This second edition features more information on aluminum scrap pricing and the economics of recycling, the analysis of dross processing methods currently in use by the industry, and drosses produced. The book has been updated throughout to include the most up-to-date information.
The second edition of Applied Structural and Mechanical Vibrations: Theory and Methods continues the first edition's dual focus on the mathematical theory and the practical aspects of engineering vibrations measurement and analysis. This book emphasises the physical concepts, brings together theory and practice, and includes a number of worked-out examples of varying difficulty and an extensive list of references. What's New in the Second Edition: Adds new material on response spectra Includes revised chapters on modal analysis and on probability and statistics Introduces new material on stochastic processes and random vibrations The book explores the theory and methods of engineering vibrations. By also addressing the measurement and analysis of vibrations in real-world applications, it provides and explains the fundamental concepts that form the common background of disciplines such as structural dynamics, mechanical, aerospace, automotive, earthquake, and civil engineering. Applied Structural and Mechanical Vibrations: Theory and Methods presents the material in order of increasing complexity. It introduces the simplest physical systems capable of vibratory motion in the fundamental chapters, and then moves on to a detailed study of the free and forced vibration response of more complex systems. It also explains some of the most important approximate methods and experimental techniques used to model and analyze these systems. With respect to the first edition, all the material has been revised and updated, making it a superb reference for advanced students and professionals working in the field.
A Design Aid for Structural Engineers Circular Storage Tanks and Silos, Third Edition effectively explains and demonstrates the concepts needed in the analysis and design of circular tanks. Tanks have to sustain high-quality serviceability over a long lifespan. This text covers computing the stresses in service in several chapters. It considers thermal stresses and the time-dependent stresses produced by creep and shrinkage of concrete and relaxation of prestressed steel. It also examines the effects of cracking and the means for its control. This text is universally applicable; no specific system of units is used in most solved examples. However, it is advantageous to use actual dimensions and forces on the structure in a small number of examples. These problems are set in SI units and Imperial units; the answers and the graphs related to these examples are given in the two systems. What's New in This Edition: Presents a new chapter on recommended practice for design and construction of concrete water tanks and liquefied natural gas tanks Includes a companion Website providing computer programs CTW and SOR Provides material on CTW (Cylindrical Tank Walls); with simple input, it performs analysis for load combinations anticipated in the design of cylindrical walls with or without prestressing Contains the finite-element computer program SOR (Shells of Revolution); it performs analysis for design of axisymmetrical shells of general shapes This guide is an authoritative resource for the analysis and design of circular storage tanks and silos.
The Strip Method Design Handbook is a thorough guide to the use of the strip method, developed by Arne Hillerborg, for design of reinforced concrete slabs. The strip method of design is relevant to many types of slabs including rectangular slabs with all sides supported and regular flat slabs with cantilevering parts. The author discusses unevenly distributed loads, concentrated loads and the influence of openings as well as joist floors and prestressed slabs. This book provides a practical guide for the designer demonstrating how to use the strip method in a wide range of design situations specific to a slab type. The method is illustrated throughout with numerical examples and the analysis is rationalised with approximations and formulas for the calculation of design moments.
Long span suspension bridges cost billions. In recent decades, structural health monitoring systems have been developed to measure the loading environment and responses of these bridges in order to assess serviceability and safety while tracking the symptoms of operational incidents and potential damage. This helps ensure the bridge functions properly during a long service life and guards against catastrophic failure under extreme events. Although these systems have achieved some success, this cutting-edge technology involves many complex topics that present challenges to students, researchers, and engineers alike. Systematically introducing the fundamentals and outlining the advanced technologies for achieving effective long-term monitoring, Structural Health Monitoring of Long-Span Suspension Bridges covers: The design of structural health monitoring systems Finite element modelling and system identification Highway loading monitoring and effects Railway loading monitoring and effects Temperature monitoring and thermal behaviour Wind monitoring and effects Seismic monitoring and effects SHMS-based rating method for long span bridge inspection and maintenance Structural damage detection and test-bed establishment These are applied in a rigorous case study, using more than ten years' worth of data, to the Tsing Ma suspension bridge in Hong Kong to examine their effectiveness in the operational performance of a real bridge. The Tsing Ma bridge is the world's longest suspension bridge to carry both a highway and railway, and is located in one of the world's most active typhoon regions. Bridging the gap between theory and practice, this is an ideal reference book for students, researchers, and engineering practitioners.
When produced correctly, concrete can be extremely strong, with high load-bearing capacity and superior durability. Another noteworthy property is the relatively low amount of energy and resources consumed during production. Super-High-Strength High Performance Concrete brings together the results of a major research project by the National Natural Science Foundation of China and the Doctoral Foundation of the Ministry of Education of China. This ten-year project explored the properties, performance, and potential of super-high-strength high performance (SHSHP) concrete. With a view towards improved production that optimizes the strength and durability of concrete, the book presents a host of topics on the cutting edge of concrete research. These include: A new method for the specific strength analysis of the pozzolanic effect of active mineral admixtures Analysis of the strength composition of SHSHP concrete Optimization of raw materials and mix proportion parameters for strength and flowability Analysis of the mechanical properties, deformation, and durability of SHSHP concrete Methods for decreasing autogeneous shrinkage Testing methods for SHSHP concrete The book concludes with a consideration of the practical and economic benefits of these optimized concretes. A systematic study of the different aspects of this essential commodity as well as the future direction of concrete science and technology, this book is a valuable resource for material scientists and engineers engaged in developing better structures.
Supplementary cementing materials (SCMs), such as fly ash, slag, silica fume, and natural pozzolans, make a significant difference to the properties of concrete but are rarely understood in any detail. SCMs can influence the mechanical properties of concrete and improve its durability in aggressive environments. Supplementary Cementing Materials in Concrete covers the chemical, physical, and mineralogical properties of SCMs; their chemical reactions; and the resulting changes in the microstructure of concrete. The author links the properties of the material at the microstructural level with its behavior in laboratory tests, and, in turn, to the performance of the material in concrete structures under field exposure. He explains how SCMs influence the mechanical properties of concrete and improve its durability and also covers how various SCMs influence hydration reactions and the evolution of the pore structure and pore-solution composition. However, SCMs are not a panacea for concrete and improper use may be injurious to certain properties. Achieving the maximum benefit from SCMs requires an understanding of the materials and how they impact concrete properties under various conditions. Drawing on the author's 30 years of experience, this book helps engineers and practitioners to optimize the use of supplementary cementing materials to improve concrete performance.
Cement-based concrete has excellent properties as a construction material, and the raw materials of cement-rocks, and limestone and clay-are bountiful. Yet its production generates high quantities of CO2, making it a potentially unsustainable material. However, there are no alternatives to concrete and steel as basic methods for development of socioeconomic infrastructure at this time. Highlighting sustainability issues in the construction industry, The Sustainable Use of Concrete presents guidelines on how to move toward sustainable concrete construction. The book begins by clarifying the historic background and meaning of sustainability, after which it outlines areas that need to be considered in connection with sustainability in the concrete and construction field. It examines environmental, social and cultural, and economic aspects, then considers an evaluation system of sustainability. The authors include various tools and ISO standards, and then explore technologies for sustainability, with case studies and examples that promote understanding of current technologies. Although the construction sector, in the broadest sense, has come to recognize that infrastructure development over the past two centuries has been unsustainable, it has been slow to adjust. Comprehensive information and relevant practical guidance are very scarce. This book lays out a roadmap for creating a human-friendly and safe environment with low environmental burden.
Immersed tunnels have been around for more than a century but remain a relatively unknown form of tunnel construction. For waterway crossings they are an effective alternative to bored tunnels and bridges, particularly in shallower waters, soft alluvial soils, and earthquake-prone areas. Successful implementation requires a thorough understanding of a wide variety of civil engineering disciplines and construction techniques. Immersed Tunnels brings together in one volume all aspects of immersed tunnels from initial feasibility and planning, through design and construction, to operation and maintenance. Get Valuable Insights into Immersed Tunnel Engineering from Expert Practitioners The book presents design and construction principles to give a full appreciation not only of what is involved in an immersed tunnel scheme but also how potential problems are dealt with and overcome. It examines important factors that have to be considered, particularly environmental implications and mechanical and electrical systems. It also gives practical examples of how specific techniques have been used in various projects and highlights issues that designers and constructors should be aware of. In addition, the book discusses operation and maintenance and reviews contractual matters. These aspects are described from the viewpoint of two experienced practitioners in the field who have a wealth of experience on immersed tunnel projects worldwide. As tunnels are increasingly being adopted as engineering solutions around the world, this unique and extensively illustrated reference explores the wide variety of immersed tunnel techniques available to designers and constructors. It provides essential insight for anyone involved, or seeking to be involved, with immersed tunnel projects.
Unlike similar titles providing general information on ground improvement, Jet Grouting: Technology, Design and Control is entirely devoted to the role of jet grouting - its methods and equipment, as well as its applications. It discusses the possible effects of jet grouting on different soils and examines common drawbacks, failures and disadvantages, recent advances, critical reviews, and the range of applications, illustrated with relevant case studies. The book addresses several topics involving this popular worldwide practice including technology issues, the interpretation of the mechanisms taking place during the grouting, the quantitative prediction of their effects, the design of jet-grouted structures, and procedures for controlling jet grouting results. Discusses the design criteria for jet grouting projects and reviews existing design rules and codes of practice of different countries Provides practical methods for design calculations of the most important jet-grouted structures such as foundations, earth retaining walls, water cut-offs, bottom plugs, and provisional tunnel supports Includes the current standard control methods and most innovative techniques reported for the implementation of quality control and quality assurance procedures Jet Grouting: Technology, Design and Control analyzes the typical jet-grouted structures, such as foundations, earth retaining walls, water cut-offs, bottom plugs and tunnel supports, and serves as a practical manual for the correct use of jet grouting technology.
Written to meet the requirements of engineers working in construction and concrete manufacturing, Mineral Admixtures in Cement and Concrete focuses on how to make more workable and durable concrete using mineral admixtures. In particular, it covers pulverized fuel ash (PFA), blast furnace slag (BFS), silica fume (SF), rice husk ash (RHA), and metakaolin (MK), as well as some new admixtures currently under investigation. For each mineral admixture, the book looks at manufacturing and processing, physical characteristics, chemical and mineralogical composition, quality control, and reported experiences. It also examines the provisions of national standards on the admixture's addition to cement and concrete. References to microstructures and chemistry are kept to a minimum and only discussed to the extent necessary to help readers apply the admixtures in practice. The book also addresses hydration, presenting the relevant chemistry and detailing the impact of adding mineral admixtures to concrete. A chapter on strength and durability explains the mechanisms, models, and standards related to concrete deterioration and how to mitigate carbonation, alkali-aggregate reactions, chloride attack and corrosion of reinforcement, external and internal sulphate attack, decalcification, and freeze-thaw action. This book is a useful reference for practicing engineers and students alike. It brings together, in one volume, information on the materials, hydration, and the strength and durability of cement and concrete with mineral admixtures. Offering a deeper understanding of mineral admixtures, it encourages engineers to more effectively use these and other wastes in cement and concrete to support more sustainable growth of the cement and construction industry.
In recent years, the focus in hydrogeologic investigations has expanded to include aquifer sustainability as part of resource evaluations. While there are other books on the subject, Field Hydrogeology: A Guide for Site Investigations and Report Preparation provides the first integrated presentation of the American Society of Testing Materials (ASTM) standards, US Geological Survey (USGS), and US Environmental Protection Agency (EPA) field techniques. It also includes access to a website containing software for designing aquifer tests and aquifer-recharge experiments. Written by an author with more than 50 years of experience in hydrology and geology, this reference treats the subject from a field standpoint. Useful as a field guide or textbook, it contains standard methods for planning and undertaking hydrogeologic investigations. It incorporates case studies, contains a glossary of field-hydrogeology technical terms, and provides a detailed list of ASTM standards and key hydrologic Web sites. The guide is based on ASTM standards as well as EPA and US Department of Interior field technical manuals. The text covers hydrogeologic fundamentals, conceptual models, planning an investigation, surface investigations, subsurface investigations, field inventory, stream flow measurements, water quality measurements, and report preparation. This revised and updated Second Edition also includes new material on the history of hydrogeology, field safety, aquifers, groundwater quality, hydrogeologic maps, and federal regulations. It gives students and seasoned professionals a vast array of clearly written descriptive materials and an extensive source of references available at their fingertips. What's New in This Second Edition: New chapter on the history of hydrogeology New chapter on groundwater development and management, including US federal regulations and transboundary aquifers New material on field safety, groundwater quality and testing, and construction of hydrogeologic cross section and maps New international case studies New THEIS computer model to design aquifer tests Updated information on latest principles and techniques
Fiber-reinforced polymer (FRP) decks have been increasingly used for new construction and rehabilitation projects worldwide. The benefits of using FRP bridge decks, such as durability, light weight, high strength, reduced maintenance costs, and rapid installation, outweigh their initial in-place material costs when implemented in highway bridge projects. FRP Deck and Steel Girder Bridge Systems: Analysis and Design compiles the necessary information to facilitate the development of the standards and guidelines needed to promote further adoption of composite sandwich panels in construction. It also, for the first time, proposes a complete set of design guidelines. Providing both experimental investigations and theoretical analyses, this book covers three complementary parts: FRP decks, shear connectors between the deck and steel girders, and the behavior of bridge systems. The text presents stiffness and strength evaluations for FRP deck panels and FRP deck-girder bridge systems. While the FRP deck studies focus on honeycomb FPR sandwich panels over steel girder bridge systems, they can be adapted to other sandwich configurations. Similarly, the shear connection and bridge system studies can be applied to other types of FRP decks. Chapters discuss skin effect, core configuration, facesheet laminates, out-of-plane compression and sheer, mechanical shear connectors, and FRP deck-steel girder bridge systems. Based on the findings described in the text, the authors propose design guidelines and present design examples to illustrate application of the guidelines. In the final chapter, they also provide a systematic analysis and design approach for single-span FRP deck-stringer bridges. This book presents new and improved theories and combines analytical models, numerical analyses, and experimental investigations to devise a practical analysis procedure, resulting in FRP deck design formulations.
Chloride ingress in reinforced concrete induces corrosion and consequent spilling and structural weakness, and it occurs world-wide and imposes an enormous cost. Yet it can be resisted by using test methods and relevant models for service life prediction. Resistance of Concrete to Chloride Ingress sets out current understanding of chloride transport mechanisms, test methods and prediction models. It describes basic mechanisms and theories, and classifies the commonly used parameters and their units which expressing chloride and its transport properties in concrete. Laboratory test methods and in-field applicable test methods, including precision results from inter-laboratory comparison tests, are then outlined. Some of the fundamentals of models are explained, and the different types of models are then analyzed theoretically and critically. Analytical and probabilistic approaches are used to analyze the sensitivity of various models and the results from a benchmarking evaluation of different models are presented and discussed. Guidelines for the practical use of test methods and models are given, including tests for in-situ applications, and test methods validated by the precision results are detailed. The book draws to a large extent on the Chlortest project, which involved seventeen partners from ten European countries, and serves as an authoritative guide.
Develop a Greater Understanding of How and Why Surface Wave Testing Works Using examples and case studies directly drawn from the authors' experience, Surface Wave Methods for Near-Surface Site Characterization addresses both the experimental and theoretical aspects of surface wave propagation in both forward and inverse modeling. This book accents the key facets associated with surface wave testing for near-surface site characterization. It clearly outlines the basic principles, the theoretical framework and the practical implementation of surface wave analysis. In addition, it also describes in detail the equipment and measuring devices, acquisition techniques, signal processing, forward and inverse modeling theories, and testing protocols that form the basis of modern surface wave techniques. Review Examples of Typical Applications for This Geophysical Technique Divided into eight chapters, the book explains surface wave testing principles from data measurement to interpretation. It effectively integrates several examples and case studies illustrating how different ground conditions and geological settings may influence the interpretation of data measurements. The authors accurately describe each phase of testing in addition to the guidelines for correctly performing and interpreting results. They present variants of the test within a consistent framework to facilitate comparisons, and include an in-depth discussion of the uncertainties arising at each stage of surface wave testing. Provides a comprehensive and in-depth treatment of all the steps involved in surface wave testing Discusses surface wave methods and their applications in various geotechnical conditions and geological settings Explains how surface wave measurements can be used to estimate both stiffness and dissipative properties of the ground Addresses the issue of uncertainty, which is often an overlooked problem in surface wave testing Includes examples with comparative analysis using different processing techniques and inversion algorithms Outlines advanced applications of surface wave testing such as joint inversion, underwater investigation, and Love wave analysis Written for geotechnical engineers, engineering seismologists, geophysicists, and researchers, Surface Wave Methods for Near-Surface Site Characterization offers practical guidance, and presents a thorough understanding of the basic concepts.
Geotechnical instrumentation is used for installation, monitoring and assessment on any sizeable project, particularly in urban areas, and is used for recording, controlled remedial work, and safety. This unique and up-to-date book deals with the conceptual philosophy behind the use of instruments, and then systematically covers their practical use. It is divided into displacement dominated systems and stress recording systems. The limitations are discussed and the theoretical background for data assessment and presentation are covered in some detail, with some relevant background material in theoretical soil mechanics. Relevant advanced electronic techniques such as laser scanning in surveying and fibre-optics are also included and communication and data recovery systems are discussed. This book is written for senior designers, consulting engineers, and major contractors who need a major introduction to the general purpose, availability, and analysis of field instruments before details of their own project can be progressed, and it serves as a textbook to any specialist geotechnical MSc or professional seminar course in which instrumentation forms a major part.
Many books focus on individual differences and how those relate to traffic safety such as accident proneness, gender differences, age, alcohol, and the effects of drugs. Others focus on the safety effects regarding the vehicle such as airbags, anti-lock brakes, navigation systems, intelligent cruise control and other new gadgets coming to the vehicle. Even though these topics are undoubtedly important for traffic safety, this book takes a unique approach as it focuses solely on the road environment. Designing Safe Road Systems provides the background for those who want to know more about the effects of road design on driving behaviour. It uses a systems approach to allow a better understanding of why and in what circumstances drivers may commit errors. This understanding will ultimately lead to road systems that prevent (fatal) errors from occurring. The book contains an overview of the current models and theories about human performance and human behaviour in traffic that are relevant for all those involved in designing safe road systems. The central theme of this book is how design principles can reduce the probability of an error while driving. The authors demonstrate how knowledge of human factors helps a road authority to better understand how road users behave. They argue that in many cases the design of the environment can be further adjusted to human capabilities, and that safety should be considered a system property to be built into the road system.
This book provides an invaluable update on the science and technology of plant fibre and its growing importance as a source material. The book presents a basic and clear understanding of the most advanced developments of a wide range of functional plant fibre materials. The development and utilisation of plant fibre resources are considered to be one of the strategies with most potential for reducing consumption of petrochemicals, whether for direct use to produce energy in place of oil, coal and gas, and chemicals or to develop new materials. The ready supply and low cost of these 'green' products and processes provide endless opportunities. The book considers structure, processing, properties, and applications with a comprehensive examination and discussion of the structure, chemistry and behaviour of plant fibre. This is followed by basic information and a thorough understanding of functional materials directly derived from plant fibres, mainly including nanocellulose, physically and chemically treated plant fibre, cellulose film, cellulose textile, cellulose detection materials, and nanocellulose aerogel. The processing, property and application of functional plant fibre composites is then considered, including nanocellulose composite, plant fibre/natural resin composite, wood plastic composites and long fibre composites.
An increasing number of agencies, academic institutes, and governmental and industrial bodies are embracing the principles of sustainability in managing their activities and conducting business. Pavement Life-Cycle Assessment contains contributions to the Pavement Life-Cycle Assessment Symposium 2017 (Champaign, IL, USA, 12-13 April 2017) and discusses the current status of as well as future developments for LCA implementation in project- and network-level applications. The papers cover a wide variety of topics: - Recent developments for the regional inventory databases for materials, construction, and maintenance and rehabilitation life-cycle stages and critical challenges - Review of methodological choices and impact on LCA results - Use of LCA in decision making for project selection - Implementation of case studies and lessons learned: agency perspectives - Integration of LCA into pavement management systems (PMS) - Project-level LCA implementation case studies - Network-level LCA applications and critical challenges - Use-phase rolling resistance models and field validation - Uncertainty assessment in all life-cycle stages - Role of PCR and EPDs in the implementation of LCA Pavement Life-Cycle Assessment will be of interest to academics, professionals, and policymakers involved or interested in Highway and Airport Pavements.
Winner of the Japanese Geotechnical Society 2016 publication award Written by a veteran geotechnical engineer with a long record of research discoveries, Constitutive Modeling of Geomaterials: Principles and Applications presents a simple and unified approach to modeling various features of geomaterials in general stress systems. The book discusses the fundamentals of the constitutive modeling of soils and illustrates the application of these models to boundary value problems. Helping readers easily understand the fundamentals and modeling of soil behaviors, the author first explains the ideas and formulations for modeling soil features in one-dimensional conditions. He then extends the one-dimensional models to three-dimensional models using the tij concept. The text covers the subloading tij model and other methods that describe density, bonding, time effect, and more. Moving on to the practical application of the constitutive models, the author presents the numerical simulations of typical geotechnical problems (numerical modeling) and the corresponding model tests (physical modeling). Using a framework that leads to a unified set of material parameters, this book shows how to formulate a constitutive model capable of simulating the main features of soil behavior. It not only covers recent methods and models but also uses real test data to prove their reliability.
A clear, concise discussion of today's hottest topics in climate change, including adapting to climate change and geo-engineering to mitigate the effects of change, Engineering Response to Climate Change, Second Edition takes on the tough questions of what to do and offers real solutions to the practical problems caused by radical changes in the Earth's climate. From energy consumption and carbon dioxide emissions reduction, to climate-altering technologies, this new edition explores the latest concerns such as acidification of the ocean, energy efficiency, transportation, space solar power, and future and emerging possibilities. The editors set the stage by discussing the separate issues of the emissions of radiatively important atmospheric constituents, energy demand, energy supply, agriculture, water resources, coastal hazards, adaption strategies, and geo-engineering. They explain the difference between the natural and human drivers of climate change and describe how humans have influenced the global climate during past decades. Each chapter concludes with discussion questions, calculations, and possible research topics. See What's in the Second Edition: New conceptual tools and research necessary for problems associated with fossil fuels Cutting-edge topics such as adaption and geo-engineering The latest concerns such as acidification of the ocean, energy efficiency, transportation, and space solar power Solutions to problems caused by changes in the Earth's climate So much has changed in the 15 years since the publication of the first edition, that this is, in effect, a completely new book. However, the general theme is the same: the climate energy problem has become largely an engineering problem. With this in mind, the book explores what engineers can do to prevent, mitigate, or adapt to climate change. |
You may like...
Handbook of Sustainable Concrete and…
Francesco Colangelo, Raffaele Cioffi, …
Paperback
R5,195
Discovery Miles 51 950
Macro-Engineering - MIT Brunel Lectures…
F.P. Davidson, E. G. Frankl, …
Hardcover
R1,903
Discovery Miles 19 030
Strength of Materials and Structures
Carl T.F. Ross, John Case, …
Paperback
Manufacturing, Modelling, Management and…
George Chryssolouris, D. Mourtzis
Paperback
R2,034
Discovery Miles 20 340
Geopolymer Concrete Structures with…
Mohamed Elchalakani, Bo Yang, …
Paperback
R4,803
Discovery Miles 48 030
Concrete-Filled Double-Skin Steel…
Mostafa Fahmi Hassanein, Mohamed Elchalakani
Paperback
R3,711
Discovery Miles 37 110
Adapting the Built Environment for…
Fernando Pacheco Torgal, Claes-Goran Granqvist
Paperback
R6,035
Discovery Miles 60 350
|