Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Medicine > Nursing & ancillary services > Biomedical engineering > General
This book offers a comprehensive and inclusive insight into the history of prostate cancer and its sufferers. Until recently, little practical help could be offered for men afflicted with the devastating diseases of the genitourinary organs. This is despite complaints of painful urination from aging men being found in ancient medical manuscripts, despite the anatomical discoveries of the European Renaissance and despite the experimental surgical researches of the eighteen and nineteenth centuries. As diseases of the prostate, including prostate cancer, came to be better understood in the early twentieth century, therapeutic nihilism continued as curative radical surgeries and radiotherapy failed. The therapeutic 'turn' came with hormonal therapies, itself a product of the explosive growth of U.S. biomedicine from the 1940s onwards. By the 1990s, prostate cancer screening had become a somewhat ubiquitous but controversial feature of the medical encounter for American men as they aged, which greatly influenced the treatment pathways and identity of the male patient: as victim, as hero, and ultimately, as consumer.
These proceedings present the latest information on regulations and standards for medical and non-medical devices, including wearable robots for gait training and support, design of exoskeletons for the elderly, innovations in assistive robotics, and analysis of human-machine interactions taking into account ergonomic considerations. The rapid development of key mechatronics technologies in recent years has shown that human living standards have significantly improved, and the International Conference on Wearable Sensor and Robot was held in Hangzhou, China from October 16 to 18, 2015, to present research mainly focused on personal-care robots and medical devices. The aim of the conference was to bring together academics, researchers, engineers and students from across the world to discuss state-of-the-art technologies related to various aspects of wearable sensors and robots.
Written in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set covers the state of the art in the development and implementation of advanced thin films and coatings in the biological field. Consisting of two volumes-Processing and Characterization and Applications-this handbook details the latest understanding of advances in the design and performance of biological and biomedical coatings, covering a vast array of material types, including bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contributors delve into a wide range of novel techniques used in the manufacture and testing of clinical applications for coatings in the medical field, particularly in the emerging area of regenerative medicine. An exploration of the fundamentals elements of biological and biomedical coatings, the first volume, Processing and Characterization, addresses: Synthesis, fabrication, and characterization of nanocoatings The sol-gel method and electrophoretic deposition Thermal and plasma spraying Hydroxyapatite and organically modified coatings Bioceramics and bioactive glass-based coatings Hydrothermal crystallization and self-healing effects Physical and chemical vapor deposition Layered assembled polyelectrolyte films With chapters authored by world experts at the forefront of research in their respective areas, this timely set provides searing insights and practical information to explore a subject that is fundamental to the success of biotechnological pursuits.
Covers different technologies like AI, IoT and Signal Processing in the context of biomedical applications Reviews medical image analysis, disease detection, and prediction Comprehends the advantage of recent technologies for medical record keeping through electronics health records (EHRs) Presents state of art research in the field of biomedical engineering using various physiological signals Explores different Bio Sensors used in Healthcare Applications using IoT
Explores the utilization of marine surfactants for biological and biomedical applications Provides depth knowledge on marine surfactant preparations Discusses the development of personal care or cosmeceutical products using marine surfactants Examines various marine derived surfactants for treatment of cancer related diseases Reviews marine surfactants for environmental applications
This book provides a foundation for understanding the fundamentals
of biomedical informatics, which deals with the storage, retrieval,
and use of biomedical data for biological problem solving and
medical decision making. It covers the application of these
principles to the three main biomedical domains of basic biology,
clinical medicine, and public health. The author offers a coherent
summary, focusing on the three core concept areas of biomedical
data and knowledge representation, biomedical information access,
biomedical decision making, and information and technology use in
biomedical contexts.
This book presents select proceedings of the International Conference on Future Learning Aspects of Mechanical Engineering (FLAME 2018). The book discusses interdisciplinary areas such as automobile engineering, mechatronics, applied and structural mechanics, bio-mechanics, biomedical instrumentation, ergonomics, biodynamic modeling, nuclear engineering, agriculture engineering, and farm machineries. The contents of the book will benefit both researchers and professionals.
Dendrimers are repeatedly branched and roughly spherical large molecules. They can be used in various medical applications, such as anticancer polymeric nanomedicines and nanocarriers, gene carriers and vectors in gene delivery, contrast agents for molecular imaging and vaccines against infectious diseases and cancer. The highly branched, multivalent nature and molecular architecture of dendrimers make them ideal tools for a variety of tissue engineering applications. This book describes different categories of dendrimers, their biomedical and physico-chemical applications as well as convergent and divergent syntheses, click chemistry and ligation strategies. It is a rich source of information for researchers in biochemistry and pharmacology working on drug development as well as for organic chemists who are engaged in synthesis of dendrimers.
This book discusses applications of pluripotent stem cells to study eye disease in vitro and to create novel therapies for degenerative eye diseases. Chapters are contributed by experts in the field and cover such topics as the use of pluripotent stem cells in 2D and 3D engineering of ocular tissues for disease modelling and drug testing as well as approaches to replace degenerated RPE and photoreceptors in macular degeneration and retinitis pigmentosa. Pluripotent Stem Cells in Eye Disease Therapy presents a comprehensive discussion of basic science and clinical applications and is an indispensable resource for everyone from advanced graduate students to advanced professionals who want to learn about the potential of stem cell biology and its role in the field of retinal diseases.
This book provides a guiding thread between the distant fields of fluid mechanics and clinical cardiology. Well rooted in the science of fluid dynamics, it drives the reader across progressively more realistic scenarios up to the complexity of routine medical applications. Based on the author's 25 years of collaborations with cardiologists, it helps engineers learn communicating with clinicians, yet maintaining the rigor of scientific disciplines. This book starts with a description of the fundamental elements of fluid dynamics in large blood vessels. This is achieved by introducing a rigorous physical background accompanied by examples applied to the circulation, and by presenting classic and recent results related to the application of fluid dynamics to the cardiovascular physiology. It then explores more advanced topics for a physics-based understanding of phenomena effectively encountered in clinical cardiology. It stands as an ideal learning resource for physicists and engineers working in cardiovascular fluid dynamics, industry engineers working on biomedical/cardiovascular technology, and students in bio-fluid dynamics. Written with a concise style, this textbook is accessible to a broad readership, including students, physical scientists and engineers, offering an entry point into this multi-disciplinary field. It includes key concepts exemplified by illustrations using cutting-edge imaging, references to modelling and measurement technologies, and includes unique original insights.
This book provides an overview of biocomposite chemistry, chemical modifications, characterization and applications in biomedicine, with emphasis on recent advances in the field. Authored by experts, the chapters discuss the design, development and selection of biomedical composites for a particular therapeutic application, as well as providing insight into the regulatory and clinical aspects of biomedical composite use. While this book is primarily intended for scientists from the fields of medical, pharmaceutical, biotechnological and biomedical engineering, it is also useful as an advanced text for students and research scholars.
Bioelectromagnetics in Healthcare: Advanced sensing and communication applications is a collection of twelve invited chapters from international experts from the UK, Japan, Switzerland, and the United States of America. The book forms a cohesive architecture that covers the state-of-the-art in terms of sensing and communications with relevance to bioelectromagnetics in healthcare. The book provides a valuable insight into the current and future possibilities where electromagnetics engineers will need to keep improving radiofrequency device performance in terms of better efficiency, greater sensitivity, reduced unintended power absorption by the body, smaller size, and lower power consumption. Topics covered include dielectric measurements, dosimetry for bioelectromagnetics, phantom recipes for implanted and wearable antenna applications, antennas for implants, electromagnetic coupling in biological media, electromagnetic resonators and metamaterials-based structures for chemical and biological sensing in body-centric wireless applications, bone fracture monitoring using implanted antennas, wearable antennas for sensing, epidermal and conformal electronics, radar for healthcare technology, therapeutic applications of electromagnetic waves, and optoelectronic sensing of physiological monitoring. The book is aimed at electromagnetics engineers and advanced students in electromagnetics working on healthcare and medical applications.
This volume comprises the latest developments in both fundamental science and patient-specific applications, discussing topics such as: cellular mechanics, injury biomechanics, biomechanics of the heart and vascular system, algorithms of computational biomechanics for medical image analysis, and both patient-specific fluid dynamics and solid mechanics simulations. With contributions from researchers world-wide, Computational Biomechanics for Medicine: Measurments, Models, and Predictions provides an opportunity for specialists in the field to present their latest methodologies and advancements.
This book reports on advanced topics in the areas of wearable robotics research and practice. It focuses on new technologies, including neural interfaces, soft wearable robots, sensors and actuators technologies, discussing industrially and medically-relevant issues, as well as legal and ethical aspects. It covers exemplary case studies highlighting challenges related to the implementation of wearable robots for different purposes, and describing advanced solutions. Based on the 5th International Symposium on Wearable Robotics, WeRob2020, and on WearRacon Europe 2020, which were both held online on October 13-16, 2020, the book addresses a large audience of academics and professionals working in for the government, in the industry, and in medical centers, as well as end-users alike. By merging together engineering, medical, ethical and industrial perspectives, it offers a multidisciplinary, timely snapshot of the field of wearable technologies.
This book is the first comprehensive overview of the emerging field of cuffless blood pressure monitoring. Increasing clinical evidence proves that longitudinal measurements of blood pressure allow for earlier detection and better management of multiple medical conditions and for superior prediction of cardiovascular events. Unfortunately, today's clinical and industry standards for blood pressure monitoring still require the inflation of a pneumatic cuff around a limb each time a measurement is taken. Over the last decades clinicians, scientists and device manufacturers have explored the feasibility of technologies that reduce or even completely eliminate the need of cuffs, initiating the era of cuffless blood pressure monitoring. Among the existing literature, this book is intended to be a practical guide to navigate across this emerging field. The chapters of the handbook have been elaborated by experts and key opinion leaders in the domain, and will guide the reader along the clinical, scientific, technical, and regulatory aspects of cuffless blood pressure monitoring.
Operation Research methods are often used in every field of modern life like industry, economy and medicine. The authors have compiled of the latest advancements in these methods in this volume comprising some of what is considered the best collection of these new approaches. These can be counted as a direct shortcut to what you may search for. This book provides useful applications of the new developments in OR written by leading scientists from some international universities. Another volume about exciting applications of Operations Research is planned in the near future. We hope you enjoy and benefit from this series!
The applications of nanoparticulate drug delivery have gained significant attention in cancer diagnosis and treatment. Owing to their unique features and design, nanomedicines have made remarkable progress in eliminating dreadful tumors. Research in cancer nanomedicine spans multitudes of drug-delivery systems that include high tumor-targeting ability, sensitivity toward tumor microenvironments, and improved efficacy. Various nanocarriers have been developed and approved for anti-tumor drug targeting. These nanocarriers, such as liposomes, micelles, nanotubes, dendrimers, and peptides, offer several advantages including high selectivity, multifunctionality, specificity, biocompatibility, and precise control of drug release. This book provides complete information about each aspect of nanomaterials and nanotherapeutics, including synthesis, analysis, disease diagnosis, mechanistic insight, targeted drug delivery, and clinical implications in a concise and informative way. It presents simple and reader-friendly representations of the mechanisms of action of nanomaterials on cellular targets and highlights the challenges in targeted drug delivery with ongoing chemotherapeutic drugs.
This book provides a thorough overview of recent methods using higher level information (object or scene level) for advanced tasks such as image understanding along with their applications to medical images. Advanced methods for fuzzy image processing and understanding are presented, including fuzzy spatial objects, geometry and topology, mathematical morphology, machine learning, verbal descriptions of image content, fusion, spatial relations, and structural representations. For each methodological aspect covered, illustrations from the medical imaging domain are provided. This is an ideal book for graduate students and researchers in the field of medical image processing.
This book casts new light on the field of oral drug absorption. It outlines both the concept of the past and the novel concept of Finite Absorption Time (FAT). In addition, the authors explore the correlated need for re-definition of bioavailability, bioequivalence providing a plethora of experimental data. Accordingly, this book is intended for academics/students or scientists working in pharmaceutical industries, regulatory agencies, and contract research organizations. It can be used for teaching purposes in under- and post-graduate courses dealing with biopharmaceutics, pharmacokinetics and biomedical engineering.
This book is based on the best contributions to the advancement of bioimpedance knowledge and use from the Latin American Congress series, CLABIO. Basic bioimpedance facts as well as promising and original contributions to bioimpedance theory and applications are presented, giving the reader stimulating material for reflection, decision making, and further experiments. Contributions come from a diverse international pool of experts and address topics on electrode and skin impedance modelling, tomography, spectroscopy, instrumentation, and clinical applications.
Provides strong and accessible theoretical bases to swarm intelligence algorithms, from particle optimization to bioinspired and meta-heuristic algorithms Presents emerging meta-heuristic algorithms and applications Provides overviews on Python and R based computing libraries for swarm intelligence and meta-heuristic algorithms Presenting real-world applications, especially on Industry, Medicine and Biology. |
You may like...
Biomaterial-supported Tissue…
Mike Barbeck, Ole Jung, …
Hardcover
Current and Future Aspects of…
Islam Ahmed Hamed Khalil
Hardcover
Modern Applications in Membrane Science…
Isabel Escobar, Bart Van der Bruggen
Hardcover
R5,419
Discovery Miles 54 190
Engineered Biomaterials: Progress And…
P A Hassan, Biji Balakrishnan, …
Hardcover
R5,643
Discovery Miles 56 430
Fibroblasts - Advances in Inflammation…
Mojca Frank Bertoncelj, Katja Lakota
Hardcover
|