![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Nursing & ancillary services > Biomedical engineering > General
Computed Tomography gives a detailed overview of various aspects of computed tomography. It discusses X-ray CT tomography from a historical point of view, the design and physical operating principles of computed tomography apparatus, the algorithms of image reconstruction and the quality assessment criteria of tomography scanners. Algorithms of image reconstruction from projections, a crucial problem in medical imaging, are considered in depth. The author gives descriptions of the reconstruction methods related to tomography scanners with a parallel X-ray beam, trough solutions with fan-shaped beam and successive modifications of spiral scanners. Computed Tomography contains a dedicated chapter for those readers who are interested in computer simulations based on studies of reconstruction algorithms. The information included in this chapter will enable readers to create a simulation environment in which virtual tomography projections can be obtained in all basic projection systems. This monograph is a valuable study on computed tomography that will be of interest to advanced students and researchers in the fields of biomedical engineering, medical electronics, computer science and medicine.
This book contains 23 papers presented at the ECCOMAS Multidisciplinary Jubilee Symposium - New Computational Challenges in Materials, Structures, and Fluids (EMJS08), in Vienna, February 18-20, 2008. The main intention of EMJS08 was to react adequately to the increasing need for interdisciplinary research activities allowing ef?cient solution of complex problems in engineering and in the applied sciences. The 15th anniversary of ECCOMAS (European Community on Computational Methods in Applied Sciences) provided a suitable frame for taking the afo- mentioned situation into account by inviting distinguished colleagues from d- ferent areas of engineering and the applied sciences, encouraging them to choose multidisciplinary topics for their lectures. The main themes of EMJS08 have a long tradition in engineering and in the applied sciences: materials, structures, and ?uids. The solution of scienti?c pr- lems involving ?uids together with solids and structures, not to forget the materials the structures are made of, is of paramount importance in a technical world of rapidly increasing sophistication, referred to as the Leonardo World by the eminent German philosopher Jurgen Mittelstrass. More recently, the main themes of EMJS08 have gained considerable mom- tum, owing to signi?cant progress in nanotechnology. It enables resolution of a multitude of materials into their micro- and nanostructures. Covering aspects such as * Physical and chemical characterization * Multiscale modeling concepts, continuum micromechanics, and computational homogenization, as well as * Applications in various engineering ?elds the individual contributions to this book ?ow along different tracks of ?uids, materials, and structures.
This progressive reference redefines qualitative research as a crucial component of evidence-based practice and assesses its current and future impact on healthcare. Its introductory section explains the value of sociocultural context in case conceptualization, and ways this evidence can be integrated with quantitative findings to inform and transform practice. The bulk of the book's chapters review qualitative research in diverse areas, including pain, trauma, heart disease, COPD, and disabling conditions, and examine ways of effectively evaluating and applying qualitative data. This seismic shift in perception moves the healing professions away from traditional one-size-fits-all thinking and toward responsive, patient-centered care. Among the topics in the Handbook: *Examining qualitative alternatives to categorical representation. *The World Health Organization model of health: what evidence is needed? *Qualitative research in mental health and mental illness. *Qualitative evidence in pediatrics. *The contribution of qualitative research to medication adherence. *Qualitative evidence in health policy analysis. The Handbook of Qualitative Health Research for Evidence-Based Practice offers health and clinical psychologists, rehabilitation specialists, occupational and physical therapists, nurses, family physicians and other primary care providers new ways for understanding patients' health-related experiences and opens up new ways for developing interventions intended to improve health outcomes.
This volume contains a collection of papers from the research program Protective Artificial Respiration (PAR) . In 2005 the German Research Association DFG launched the research program PAR which is a joint initiative of medicine and fluid mechanics. The main long-term objective of this program is the development of a more protective artificial respiratory system to reduce the physical stress of patients undergoing artificial respiration. To satisfy this goal 11 projects have been defined. In each of these projects scientists from medicine and fluid mechanics do collaborate in several experimental and numerical investigations to improve the fundamental knowledge on respiration and to develop a more individual artificial breathing concept. "
Microfluidics and BioMEMS Applications central idea is on microfluidics, a relatively new research field which finds its niche in biomedical devices, especially on lab-on-a-chip and related products. Being the essential component in providing driving fluidic flows, an example of micropump is chosen to illustrate a complete cycle in development of microfluidic devices which include literature review, designing and modelling, fabrication and testing. A few articles are included to demonstrate the idea of tackling this research problem, and they cover the main development scope discussed earlier as well as other advanced modelling schemes for microfluidics and beyond. Scientists and students working in the areas of MEMS and microfluidics will benefit from this book, which may serve both communities as both a reference monograph and a textbook for courses in numerical simulation, and design and development of microfluidic devices.
This book sheds light on the large-scale engineering systems that shape and guide our everyday lives. It does this by bringing together the latest research and practice defining the emerging field of Complex Engineered Systems. Understanding, designing, building and controlling such complex systems is going to be a central challenge for engineers in the coming decades. This book is a step toward addressing that challenge.
This book is an introduction to techniques and applications of optical methods for materials Characterization in civil and environmental engineering. Emphasizing chemical sensing and diagnostics, it is written for students and researchers studying the physical and chemical processes in manmade or natural materials. Optical Phenomenology and Applications - Health Monitoring for Infrastructure Materials and the Environment, describes the utility of optical-sensing technologies in applications that include monitoring of transport processes and reaction chemistries in materials of the infrastructure and the subsurface environment. Many of the applications reviewed will address long standing issues in infrastructure health monitoring such as the alkali silica reaction, the role of pH in materials degradation, and the remote and inset characterization of the subsurface environment. The remarkable growth in photonics has contributed immensely to transforming bench-top optical instruments to compact field deployable systems. This has also contributed to optical sensors for environmental sensing and infrastructure health monitoring. Application of optical waveguides and full field imaging for civil and environmental engineering application is introduced and chemical and physical recognition strategies are presented; this is followed by range of filed deployable applications. Emphasizing system robustness, and long-term durability, examples covered include in-situ monitoring of transport phenomena, imaging degradation chemistries, and remote sensing of the subsurface ground water.
This is the only single authored text on biological polymers available for bioengineering and biomedical engineering students. The book describes the structure of polymers and how these molecules are put together to make the tissues of the body and also their role in surgical implants and in structural diseases. It provides essential reading for biomedical engineers, biologists, physicians, health care professionals and other biomedical researchers who are interested in understanding how physical forces affect the biology, physiology and pathophysiology of humans. The author is an expert on the effect of mechanical forces on extracellular matrix.
This book describes the history, origin and basic characteristics of bioactive materials. It includes a chapter dedicated to hydroxyapatite mineral, its formation and its bioactive properties. The authors address how cytotoxicity is a determining step for bioactivity. Applications of bioactive materials in the contexts of tissue regeneration, bone regeneration and cancer therapy are also covered. Silicate, metallic and mesoporous glasses are described, as well as the challenges and future prospects of research in this field.
This thesis covers a broad range of interdisciplinary topics concerning electromagnetic-acoustic (EM-Acoustic) sensing and imaging, mainly addressing three aspects: fundamental physics, critical biomedical applications, and sensing/imaging system design. From the fundamental physics perspective, it introduces several highly interesting EM-Acoustic sensing and imaging methods, which can potentially provide higher sensitivity, multi-contrast capability, and better imaging performance with less distortion. From the biomedical applications perspective, the thesis introduces useful techniques specifically designed to address selected challenging biomedical applications, delivering rich contrast, higher sensitivity and finer spatial resolution. Both phantom and ex vivo experiments are presented, and in vivo validations are progressing towards real clinical application scenarios. From the sensing and imaging system design perspective, the book proposes several promising sensing/imaging prototypes. Further, it offers concrete suggestions that could bring these systems closer to becoming "real" products and commercialization, such as replacing costly lasers with portable laser diodes, or integrating transmitting and data recording on a single board.
In 1994, in my role as Technical Program Chair for the 17th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, I solicited proposals for mini-symposia to provide delegates with accessible summaries of important issues in research areas outside their particular specializations. Terry Peters and his colleagues submitted a proposal for a symposium on Fourier Trans forms and Biomedical Engineering whose goal was "to demystify the Fourier transform and describe its practical application in biomedi cal situations." This was to be achieved by presenting the concepts in straightforward, physical terms with examples drawn for the parti cipants work in physiological signal analysis and medical imaging. The mini-symposia proved to be a great success and drew a large and appreciative audience. The only complaint being that the time allocated, 90 minutes, was not adequate to allow the participants to elaborate their ideas adequately. I understand that this feedback helped the authors to develop this book."
Today, over 500,000 medical technologies are available in hospitals, homes, and community care settings. They range from simple bandages to complex, multi-part body scanners that cost millions of dollars to develop. Yet a typical technology has a lifecycle of just 21 months before an improved product usurps it-the healthcare ecosystem is rapidly advancing and driven by a constant flow of innovation. And those innovations need innovators. With $21 billion made available for investment in the digital healthcare industry in 2020 (a 20x increase on 2010), entrepreneurs, investors, and related actors are entering the healthcare ecosystem in greater numbers than ever before. Last year alone, over 17,000 medical technology patents were filed, the third highest of all patent types. Each of those has a dedicated team of entrepreneurs behind it. Yet with increasingly strict regulations and pharmaceutical giants growing more aggressive, many thousands of entrepreneurs fail before even the patent stage: just 2% secure revenue or adoption. Healthtech Innovation: How Entrepreneurs Can Define and Build the Value of Their New Products is a down-to-earth survival guide for entrepreneurs struggling to secure a strategic position within the healthtech ecosystem. Which is expected that by 2026, the global digital health market size will be around $657 billion. This book is designed to help innovators navigate this complex and newly volatile landscape. It covers business strategy, marketing, funding acquisition, and operation in a global regulatory context. It is written in simple language, evidenced by the latest academic and industry research, and explained using real-world examples and case studies.
This book provides an overview of single-cell isolation, separation, injection, lysis and dynamics analysis as well as a study of their heterogeneity using different miniaturized devices. As an important part of single-cell analysis, different techniques including electroporation, microinjection, optical trapping, optoporation, rapid electrokinetic patterning and optoelectronic tweezers are described in detail. It presents different fluidic systems (e.g. continuous micro/nano-fluidic devices, microfluidic cytometry) and their integration with sensor technology, optical and hydrodynamic stretchers etc., and demonstrates the applications of single-cell analysis in systems biology, proteomics, genomics, epigenomics, cancer transcriptomics, metabolomics, biomedicine and drug delivery systems. It also discusses the future challenges for single-cell analysis, including the advantages and limitations. This book is enjoyable reading material while at the same time providing essential information to scientists in academia and professionals in industry working on different aspects of single-cell analysis. Dr. Fan-Gang Tseng is a Distinguished Professor of Engineering and System Science at the National Tsing Hua University, Taiwan. Dr. Tuhin Subhra Santra is a Research Associate at the California Nano Systems Institute, University of California at Los Angeles, USA.
This volume presents the latest research in Virtual Reality (VR), as it is being applied in psychotherapy, rehabilitation, and the analysis of behaviour for neurological assessment. This book will be of value to anyone already in the field and to those who are interested in the development of VR systems for therapeutic purposes. The contents include: * The latest literature reviews on VR in psychotherapy, psychological wellbeing, and rehabilitation * VR and cognitive behavior therapy * Increasing presence in VR for effective exposure therapy and treatment of anxiety disorders * VR military training for managing combat stress and preventing post traumatic stress * VR, mixed reality systems, and games for stroke rehabilitation * VR systems for improving vision in children with amblyopia * Therapeutic play in virtual environments * Healing potential of online virtual worlds such as Second Life * Neuropsychological assessment using virtual environments * Detailed accounts on how VR systems are designed, implemented, and best evaluated * Discussions of limitations, problems, and ethical concerns using VR in mental and physical therapy
This book reviews and discusses the development of self-assembled nanomaterials applied in biomedical fields. Based on self-assembled nanomaterial constructions, it highlights the mechanisms of the stimuli-response-induced assembly/disassembly and transformation. Moreover, it examines healthcare-related diseases, the applications of nanomaterials and therapy/detection strategies, providing readers with both a deeper understanding of the subject and inspirations for future research. The book is primarily intended for researchers and graduate students in the fields of material sciences and chemistry who wish to learn about the principles, methods, mechanisms and biomedical applications of self-assembled nanomaterials.
This book presents a comprehensive study on a new class of branched polymers, known as hyperbranched polymers (HBPs). It discusses in detail the synthesis strategies for these particular classes of polymers as well as biocompatible and biodegradable HBPs, which are of increasing interest to polymer technologists due to their immense potential in biomedical applications. The book also describes the one-pot synthesis technique for HBPs, which is feasible for large-scale production, as well as HBPs' structure-property relationship, which makes them superior to their linear counterparts. The alterable functional groups present at the terminal ends of the branches make HBPs promising candidates in the biomedical domain, and the book specifically elaborates on the suitable characteristic properties of each of the potential biological HBPs' applications. As such, the book offers a valuable reference guide for all scientists and technologists who are interested in using these newly developed techniques to achieve faster and better treatments.
Although somatosensory system works in tandem with the motor system in biology, the majority of the prosthetics research and commercial efforts had focused on accommodating movement deficits. With the development of neuroprostheses in the last 15 years, it has become evident that somatosensory input (mainly as touch and proprioception) is essential for motor control, manipulating objects, and embodiment, in addition to its primary role for sensory perception. Somatosensory Feedback for Neuroprosthetics covers all relevant aspects to facilitate learning and doing research and development in the field. To understand the properties of the body to create viable solutions, this book starts with chapters reviewing the basic anatomy, physiology, and psychophysics of the somatosensory system, sensorimotor control, and instrumentation. Some sections are dedicated to invasive (peripheral and central, mainly cortical) and noninvasive (vibrotactile, electrotactile, etc.) approaches. Final chapters cover future technologies such as novel sensors and electrodes, safety, and clinical testing, and help to make up future prospects for this field with an emphasis on development and end use. With contributions from renowned experts, the contents include their recent findings and technical details necessary to understand those findings.
Biomedical Signal Analysis for Connected Healthcare provides rigorous coverage on several generations of techniques, including time domain approaches for event detection, spectral analysis for interpretation of clinical events of interest, time-varying signal processing for understanding dynamical aspects of complex biomedical systems, the application of machine learning principles in enhanced clinical decision-making, the application of sparse techniques and compressive sensing in providing low-power applications that are essential for wearable designs, the emerging paradigms of the Internet of Things, and connected healthcare.
This book presents the refereed proceedings of the Fourth Italian Forum on Ambient Assisted Living (AAL), held in Ancona, Italy, in October 2013. A wide range of issues are covered and new technological developments are described which will support the autonomy and independence of individuals with special needs through an innovative and integrated approach, designed to respond to the socio-economic challenges of an aging population. Topics addressed include: health and well-being, prevention and rehabilitation and support for care providers; active aging and its social implications; services for the frail elderly with health problems and their families; nutrition; ICT platforms/technologies for the benefit of the elderly; home automation and control technologies (autonomy, safety and energy saving); smart cities and smart communities; telemedicine, telerehabilitation, and telecare; mobility, participation and social inclusion; games and fun for the elderly; building design; social housing; interface design and interaction (accessibility, acceptance); social policies to encourage and support active aging; business models, market analysis and development of sustainable financing and business and ethics, privacy and data protection. Many experimental validations based on user trials and usability testing are presented and discussed. The knowledge and insights provided in this book will help researchers and others involved in AAL to understand relevant societal trends, novel technological developments and pressing challenges.
This updated fourth edition provides current information on devices and is divided into diagnostic and treatment sections. Devices are described with the theory of operation and relevant anatomical and physiological considerations. Aspects of BMET work including test equipment, standards, and information technology are also discussed. The text covers a wide variety of diagnostic and treatment devices currently used in hospitals that students will likely encounter in their career. Principles of operation and examples of use are provided. This book is unique in that it is written by an experienced biomed tech with 30 years' experience in hospitals rather than by engineers with little frontline experience. It is also unique in that it provides ancillary materials on the web and is the only guide divided into diagnostic and treatment device sections. This new edition also includes two new chapters on computers, information technology, and networking as well as health technology management. From the previous edition: "The book presents a comfortable balance between clinical applications, basic technical information, and various pictures of medical technologies one will encounter in the field. Additionally, related anatomy and physiology principles and essential technical terms are a nice complement to the technologies presented. The everyday duties and responsibilities of a biomed are captured by the various 'true-to-life' scenarios introduced throughout the book." -Joey Jones, Madisonville Community College, Kentucky, USA This book is intended for students in biomedical engineering technology and healthcare technology management (BMET/HTM) programs as well as biomedical engineering students. Field service representatives, medical device designers, and medical device sales representatives will also find it useful.
- Presents the reasons behind the decisions taken by automated algorithms - Frames eXplainable AI as a bridge between computer scientists and physicians - Emphasizes transparency in data analysis within healthcare - Covers computer vision and deep learning in tandem - Creates space to discuss human-AI relationships in future healthcare
"The Imperial Quest and Modern Memory" explores relationships between narrative and imperium in the context of Western Modernism by examining the Quest as a vexed trope in "Heart of Darkness," "Passage to India," "The Sheltering Sky," and "The Quiet American," The book takes stock of twentieth century theory regarding the Quest--as archetype, trope, and construct, considers the dominant expression and the imperial organization of this trope in Western culture and iconography from the Dark Ages to the Age of Empire, explores the ways in which this trope both lingers and changes in the context of Western Modernism, and finally gauges its permutations in Modern discourse. "The Imperial Quest and Modern Memory's" central claim is that the Modern novel simultaneously reinscribes and subverts Western and imperial manifestations of the Quest. "Heart" "of Darkness," "Passage to India," "The Sheltering Sky," and "The Quiet American "are remarkably Modern and subversive narratives. They participate in the revolutionary projects of early and high Modernism and are often in marked opposition to imperial praxis. Yet they are also profoundly influenced by the deep ideological and metaphoric structures of Western culture. Thus, the Quest trope--specifically in its Western and imperial manifestations--lingers in Modern Memory and certainly in the Modern novel. This expansive study emphasizes intriguing intersections between past and present, culture and archetype, norm and narrative, memory and contemporaneity.
This book deals with the adhesion, friction and contact mechanics of living organisms. Further, it presents the remarkable adhesive abilities of the living organisms which inspired the design of novel micro- and nanostructured adhesives that can be used in various applications, such as climbing robots, reusable tapes, and biomedical bandages. The technologies for both the synthesis and construction of bio-inspired adhesive micro- and nanostructures, as well as their performance, are discussed in detail. Representatives of several animal groups, such as insects, spiders, tree frogs, and lizards, are able to walk on (and therefore attach to) tilted, vertical surfaces, and even ceilings in different environments. Studies have demonstrated that their highly specialized micro- and nanostructures, in combination with particular surface chemistries, are responsible for this impressive and reversible adhesion. These structures can maximize the formation of large effective contact areas on surfaces of varying roughness and chemical composition under different environmental conditions.
Terahertz biomedical imaging has become an area of interest due to its ability to simultaneously acquire both image and spectral information. Terahertz imaging systems are being commercialized, with increasing trials performed in a biomedical setting. As a result, advanced digital image processing algorithms are needed to assist screening, diagnosis, and treatment. "Pattern Recognition and Tomographic Reconstruction" presents these necessary algorithms, which will play a critical role in the accurate detection of abnormalities present in biomedical imaging. Terhazertz tomographic imaging and detection technology contributes to the ability to identify opaque objects with clear boundaries, and would be useful to both in vivo and ex vivo environments, making this book a must-read for anyone in the field of biomedical engineering and digital imaging.
This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models on tumor and cancer development, quantum modeling of bird navigation compass, quantum aspects of photosynthesis, quantum biological error correction. |
You may like...
Studies in Natural Products Chemistry…
Atta-ur Rahman
Hardcover
Dihydropyrimidinones as Potent…
Mashooq Ahmad Bhat, Muneeb U Rehman, …
Paperback
R3,089
Discovery Miles 30 890
Biomedical Applications of Inorganic…
Peter C Ford, Rudi van Eldik
Hardcover
R5,859
Discovery Miles 58 590
Advances in Heterocyclic Chemistry…
Eric F.V. Scriven, Christopher A. Ramsden
Hardcover
R5,543
Discovery Miles 55 430
|