Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Medicine > Nursing & ancillary services > Biomedical engineering > General
This book is the first to summarize new technologies for engineered cell manipulation. The contents focus on control of cellular functions by nanomaterials and control of three-dimensional cell-cell interactions. Control of cellular functions is important for cell differentiation, maturation, and activation, which generally are controlled by the addition of soluble cytokines or growth factors into cell culture dishes. Target antigen molecules can be efficiently delivered to the cytosol of the dendritic cells using the nanoparticle technique described here, and cellular functions such as dendritic cell maturation can be controlled easily and with precision. This book describes basic preparation of the nanoparticles, activation control of dendritic cells, immune function control, and in vivo application for various vaccination systems. The second type of control,that of cell-cell interaction, is important for tissue engineering in order to develop three-dimensional cellular constructs. To achieve in vitro engineering of three-dimensional human tissue constructs, cell-cell interaction must be controlled in three dimensions, but typical biological cell manipulation technique cannot accomplish this task. An engineered cell manipulation technique is necessary. In this book the authors describe the fabrication of nanofilms onto cell surfaces, development of three-dimensional cellular multilayers, and various applications of the cellular multilayers as three-dimensional human models. This important work will be highly informative for researchers and students in the fields of materials science, polymer science, biomaterials, medicinal science, nanotechnology, biotechnology, and biology.
The computational modelling of deformations has been actively studied for the last thirty years. This is mainly due to its large range of applications that include computer animation, medical imaging, shape estimation, face deformation as well as other parts of the human body, and object tracking. In addition, these advances have been supported by the evolution of computer processing capabilities, enabling realism in a more sophisticated way. This book encompasses relevant works of expert researchers in the field of deformation models and their applications. The book is divided into two main parts. The first part presents recent object deformation techniques from the point of view of computer graphics and computer animation. The second part of this book presents six works that study deformations from a computer vision point of view with a common characteristic: deformations are applied in real world applications. The primary audience for this work are researchers from different multidisciplinary fields, such as those related with Computer Graphics, Computer Vision, Computer Imaging, Biomedicine, Bioengineering, Mathematics, Physics, Medical Imaging and Medicine.
Brain-computer interfaces (BCIs) are devices that enable people to communicate via thought alone. Brain signals can be directly translated into messages or commands. Until recently, these devices were used primarily to help people who could not move. However, BCIs are now becoming practical tools for a wide variety of people, in many different situations. What will BCIs in the future be like? Who will use them, and why? This book, written by many of the top BCI researchers and developers, reviews the latest progress in the different components of BCIs. Chapters also discuss practical issues in an emerging BCI enabled community. The book is intended both for professionals and for interested laypeople who are not experts in BCI research.
The book reports on advanced topics in the areas of wearable robotics research and practice. It focuses on new technologies, including neural interfaces, soft wearable robots, sensors and actuators technologies, and discusses important regulatory challenges, as well as clinical and ethical issues. Based on the 2nd International Symposium on Wearable Robotics, WeRob2016, held October 18-21, 2016, in Segovia, Spain, the book addresses a large audience of academics and professionals working in government, industry, and medical centers, and end-users alike. It provides them with specialized information and with a source of inspiration for new ideas and collaborations. It discusses exemplary case studies highlighting practical challenges related to the implementation of wearable robots in a number of fields. One of the focus is on clinical applications, which was encouraged by the colocation of WeRob2016 with the International Conference on Neurorehabilitation, INCR2016. Additional topics include space applications and assistive technologies in the industry. The book merges together the engineering, medical, ethical and political perspectives, thus offering a multidisciplinary, timely snapshot of the field of wearable technologies.
This book offers an overview of some recent advances in the Computational Bioacoustics methods and technology. In the focus of discussion is the pursuit of scalability, which would facilitate real-world applications of different scope and purpose, such as wildlife monitoring, biodiversity assessment, pest population control, and monitoring the spread of disease transmitting mosquitoes. The various tasks of Computational Bioacoustics are described and a wide range of audio parameterization and recognition tasks related to the automated recognition of species and sound events is discussed. Many of the Computational Bioacoustics methods were originally developed for the needs of speech, audio, or image processing, and afterwards were adapted to the requirements of automated acoustic recognition of species, or were elaborated further to address the challenges of real-world operation in 24/7 mode. The interested reader is encouraged to follow the numerous references and links to web resources for further information and insights. This book is addressed to Software Engineers, IT experts, Computer Science researchers, Bioacousticians, and other practitioners concerned with the creation of new tools and services, aimed at enhancing the technological support to Computational Bioacoustics applications. STTM, Speech Technology and Text Mining in Medicine and Health Care This series demonstrates how the latest advances in speech technology and text mining positively affect patient healthcare and, in a much broader sense, public health at large. New developments in text mining methods have allowed health care providers to monitor a large population of patients at any time and from any location. Employing advanced summarization techniques, patient data can be readily extracted from extensive clinical documents in electronic health records and immediately made available to the physician. These same summarization techniques can also aid the healthcare provider in extracting from the large corpora of medical literature the relevant information for treating the patient. The series topics include the design and acceptance of speech-enabled robots that assist in the operating room, studies of signal processing and acoustic modeling for speech and communication disorders, advanced statistical speech enhancement methods for creating synthetic voice, and technologies for addressing speech and language impairments. Titles in the Series consist of both authored books and edited contributions. All authored books and contributed works are peer-reviewed. The Series is for speech scientists and speech engineers, machine learning experts, biomedical engineers, medical speech pathologists, linguists, and healthcare professionals
The objective of this book is to provide up-to-date coverage of some of the emerging developments in the field of integrated DNA biochips. It will prove a useful source of information for researchers in the field and for those who are just entering the field of biochip research.
Lasers are progressively more used as versatile tools for fabrication purposes. The wide range of available powers, wavelengths, operation modes, repetition rates etc. facilitate the processing of a large spectrum of materials at exceptional precision and quality. Hence, manifold methods were established in the past and novel methods are continuously under development. Biomimetics, the translation from nature-inspired principles to technical applications, is strongly multidisciplinary. This field offers intrinsically a wide scope of applications for laser based methods regarding structuring and modification of materials. This book is dedicated to laser fabrication methods in biomimetics. It introduces both, a laser technology as well as an application focused approach. The book covers the most important laser lithographic methods and various biomimetics application scenarios ranging from coatings and biotechnology to construction, medical applications and photonics.
This edited book designs the Cognitive Computing in Human Cognition to analyze to improve the efficiency of decision making by cognitive intelligence. The book is also intended to attract the audience who work in brain computing, deep learning, transportation, and solar cell energy. Due to this in the recent era, smart methods with human touch called as human cognition is adopted by many researchers in the field of information technology with the Cognitive Computing.
Responding to the growing demand for minimally invasive procedures, this book provides a comprehensive overview of the current technological advances in image-guided surgery. It blends the expertise of both engineers and physicians, offering the latest findings and applications. Detailed color images guide readers through the latest techniques, including cranial, orthopedic, prostrate, and endovascular interventions.
Investigating Biological Systems Using Modeling describes how to
apply software to analyze and interpret data from biological
systems. It is written for students and investigators in lay
person's terms, and will be a useful reference book and textbook on
mathematical modeling in the design and interpretation of kinetic
studies of biological systems. It describes the mathematical
techniques of modeling and kinetic theory, and focuses on practical
examples of analyzing data. The book also uses examples from the
fields of physiology, biochemistry, nutrition, agriculture,
pharmacology, and medicine.
Up to 40 volumes are planned for this concise monograph series, which focuses on the implementation of various engineering principles in the conception, design, development, analysis and operation of biomedical, biotechnological and nanotechnology systems and applications. In this monograph, the authors discuss the current progress in the medical application of impedimetric biosensors, along with the key challenges in the field. First, a general overview of biosensor development, structure and function is presented, followed by a detailed discussion of impedimetric biosensors and the principles of electrochemical impedance spectroscopy. Next, the current state-of-the art in terms of the science and technology underpinning impedance-based biosensors is reviewed in detail. The layer-by-layer construction of impedimetric sensors is described, including the design of electrodes, their nano-modification, transducer surface functionalisation and the attachment of different bioreceptors. The current challenges of translating lab-based biosensor platforms into commercially-available devices that function with real patient samples at the POC are presented; this includes a consideration of systems integration, microfluidics and biosensor regeneration. The final section of this monograph describes case studies of successful impedance-based biosensors for the detection of a range of analytes from small molecules up to whole microorganisms. Finally, the authors put forward future perspectives for the clinical applications of impedimetric biosensors.
This book covers the principles of advanced 3D fabrication techniques, stem cells and biomaterials for neural engineering. Renowned contributors cover topics such as neural tissue regeneration, peripheral and central nervous system repair, brain-machine interfaces and in vitro nervous system modeling. Within these areas, focus remains on exciting and emerging technologies such as highly developed neuroprostheses and the communication channels between the brain and prostheses, enabling technologies that are beneficial for development of therapeutic interventions, advanced fabrication techniques such as 3D bioprinting, photolithography, microfluidics, and subtractive fabrication, and the engineering of implantable neural grafts.There is a strong focus on stem cells and 3D bioprinting technologies throughout the book, including working with embryonic, fetal, neonatal, and adult stem cells and a variety of sophisticated 3D bioprinting methods for neural engineering applications. There is also a strong focus on biomaterials, including various conductive biomaterials and biomimetic nanomaterials such as carbon-based nanomaterials and engineered 3D nanofibrous scaffolds for neural tissue regeneration. Finally, two chapters on in vitro nervous system models are also included, which cover this topic in the context of studying physiology and pathology of the human nervous system, and for use in drug discovery research. This is an essential book for biomedical engineers, neuroscientists, neurophysiologists, and industry professionals.
This book investigates the microstructural and mechanical properties of titanium-tantalum (TiTa) alloy formed using selective laser melting (SLM). TiTa has potential orthopaedic biomedical applications thanks to its high strength to modulus ratio. However, because it is difficult to obtain, it is still not widely used. The book describes how SLM is utilized to form this alloy, and provides a better understanding of the SLM process in porous lattice structure fabrication and its control through statistical modelling.
This book reviews fundamental advances in the use of metallic biomaterials to reconstruct hard tissues and blood vessels. It also covers the latest advances in representative metallic biomaterials, such as stainless steels, Co-Cr alloys, titanium and its alloys, zirconium, tantalum and niobium based alloys. In addition, the latest findings on corrosion, cytotoxic and allergic problems caused by metallic biomaterials are introduced. The book offers a valuable reference source for researchers, graduate students and clinicians working in the fields of materials, surgery, dentistry, and mechanics. Mitsuo Niinomi, PhD, D.D.Sc., is a Professor at the Institute for Materials Research, Tohoku University, Japan. Takayuki Narushima, PhD, is a Professor at the Department of Materials Processing, Tohoku University, Japan. Masaaki Nakai, PhD, is an Associate Professor at the Institute for Materials Research, Tohoku University, Japan.
This book explores computational fluid dynamics in the context of the human nose, allowing readers to gain a better understanding of its anatomy and physiology and integrates recent advances in clinical rhinology, otolaryngology and respiratory physiology research. It focuses on advanced research topics, such as virtual surgery, AI-assisted clinical applications and therapy, as well as the latest computational modeling techniques, controversies, challenges and future directions in simulation using CFD software. Presenting perspectives and insights from computational experts and clinical specialists (ENT) combined with technical details of the computational modeling techniques from engineers, this unique reference book will give direction to and inspire future research in this emerging field.
This thesis addresses computation fluid dynamics modelling of aortic dissection (AD), in order to generate in silico diagnostic information and assess 'virtual surgery' outcomes. The thesis introduces several important advances in the modelling of aortic dissection and lays essential groundwork for further development of this technology. The work thesis represents a unique and major step forward in our understanding of AD using a patient-specific, systematic and coherent simulation approach, and is currently the most advanced work available on AD.
Combination products are therapeutic and diagnostic products that combine drugs, devices, and/ or biological products. According to the US Food and Drug Administration (FDA), “a combination product is one composed of any combination of a drug and a device; a biological product and a device; a drug and a biological product; or a drug, device and a biological product.” Examples include prefilled syringes, pen injectors, autoinjectors, inhalers, transdermal patches, drug-eluting stents, and kits containing drug administration devices co-packaged with drugs and/or biological products. This handbook provides the most up-to-date information on the development of combination products, from the technology involved to successful delivery to market. The authors present important and up-to-the-minute pre- and post-market reviews of combination product regulations, guidance, considerations and best practices. This handbook: • Brings clarity of understanding for combination products guidance and regulations • Reviews the current state-of-the-art considerations and best practices spanning the combination product lifecycle, pre-market through post-market • Reviews medical product classification and assignment issues faced by global regulatory authorities and industry The editor is a recognized international Combination Products and Medical Device expert with over 35 years of industry experience and has an outstanding team of contributors. Endorsed by AAMI – Association for the Advancement of Medical Instrumentation.
The rapidly developing field of nanomaterials has expanded in many commercial areas. More recent studies have begun to provide a foundation for understanding how nanomaterials influence cells and how they also can serve as methodological tools for studies in medicine and cell biology, including research into stem cells. Recent investigations have shown affects of nanomaterials on specific subcellular structures, such as the actin-based brush border network in cells with an increasing emphasis on the barrier function of epithelial tissues. While other studies have shown involvement of nanoparticles in specific cytoplasmic signal transduction events such as the rise in intracellular free calcium, a signaling event known to regulate many changes in cell architecture and function. In parallel, nanomaterials are increasingly used in medicine for drug delivery, treatment of cancer and an increasing number of new applications. This book investigates these areas and also includes new methods for assessment in cell biology and medicine.
This book features a special subsection of Nanomedicine, an application of nanotech nology to achieve breakthroughs in healthcare. It exploits the improved and often novel physical, chemical and biological properties of materials only existent at the nanometer scale. As a consequence of small scale, nanosystems in most cases are efficiently uptaken by cells and appear to act at the intracellular level. Nanotechnology has the potential to improve diagnosis, treatment and follow-up of diseases, and includes targeted drug delivery and regenerative medicine; it creates new tools and methods that impact sig nificantly upon existing conservative practices. This volume is a collection of authoritative reviews. In the introductory section we define the field (intracellular delivery). Then, the fundamental routes of nanode livery devices, cellular uptake, types of delivery devices, particularly in terms of localized cellular delivery, both for small drug molecules, macromolecular drugs and genes; at the academic and applied levels, are covered. The following section is dedicated to enhancing delivery via special targeting motifs followed by the introduction of different types of intracellular nanodelivery devices (e.g. a brief description of their chemistry) and ways of producing these different devices. Finally, we put special emphasis on particular disease states and on other biomedical applications, whilst diagnostic and sensing issues are also included. Intracellular delivery / therapy is a highly topical which will stir great inter est. Intracellular delivery enables much more efficient drug delivery since the impact (on different organelles and sites) is intracellular as the drug is not supplied externally within the blood stream. There is great potential for targeted delivery with improved localized delivery and efficacy.
Proceedings of the Third International Symposium on Frontiers in Biomedical Polymers including Polymer Therapeutics: From Laboratory to Clinical Practice, held May 23-27, 1999, in Shiga, Japan. This book focuses on the progress and unique discoveries in the interdisciplinary scientific and technological area of biomedical application of polymers. The topics include polymeric materials for biomedical and pharmaceutical applications, as well as polymeric materials in therapeutics.
This book focuses on important interfacial phenomena, such as interfacial potential and interfacial multi-functionality, responsible for determining the fate of nanoparticles inside the biological milieu. Additionally, this book explores the role of surface defects in photocatalytic nanoparticles in defining the nanoparticle interaction to biological membrane and cytotoxic propensity.The authors describe the interfacial assembly of peptide/protein on conformational/functional dynamics of the peptide/protein, which may be adopted as an approach to moderate the protein misfolding diseases.
Nanoscale structures and materials have been explored in many biological applications because of their novel and impressive physical and chemical properties. Such properties allow remarkable opportunities to study and interact with complex biological processes. This book analyses the state of the art of piezoelectric nanomaterials and introduces their applications in the biomedical field. Despite their impressive potentials, piezoelectric materials have not yet received significant attention for bio-applications. This book shows that the exploitation of piezoelectric nanoparticles in nanomedicine is possible and realistic, and their impressive physical properties can be useful for several applications, ranging from sensors and transducers for the detection of biomolecules to sensible substrates for tissue engineering or cell stimulation. The book also focuses on the preparation, characterization and bio-applications of piezoelectric nanoparticles.
Genetic engineering has already produced impressive results in biological research. The gene transfer and cloning methods are changing biotechnology into an innovative activity with potentially great impact on health care, on chemical, pharmaceutical and food industries, on the agricultural and the natural environment. It has thus attracted a great deal of attention from the public and regulatory authorities. There is a need to reconcile technological progress with safety assurance and civic acceptance. Technologies are regulated according to the inherent risk evaluated, through criteria based upon existing scientific evidence, new rigorous information, and/or records of safe applications and good performances. This should also apply to biotechnology. The title Scientific-Technical Backgrounds for Biotechnology Regulation is only intended to indicate that regulatory provisions for biotechnological activities should be in agreement and not in open contradiction with scientific knowledge and established technological experience.
Respiratory motion causes an important uncertainty in radiotherapy planning of the thorax and upper abdomen. The main objective of radiation therapy is to eradicate or shrink tumor cells without damaging the surrounding tissue by delivering a high radiation dose to the tumor region and a dose as low as possible to healthy organ tissues. Meeting this demand remains a challenge especially in case of lung tumors due to breathing-induced tumor and organ motion where motion amplitudes can measure up to several centimeters. Therefore, modeling of respiratory motion has become increasingly important in radiation therapy. With 4D imaging techniques spatiotemporal image sequences can be acquired to investigate dynamic processes in the patient's body. Furthermore, image registration enables the estimation of the breathing-induced motion and the description of the temporal change in position and shape of the structures of interest by establishing the correspondence between images acquired at different phases of the breathing cycle. In radiation therapy these motion estimations are used to define accurate treatment margins, e.g. to calculate dose distributions and to develop prediction models for gated or robotic radiotherapy. In this book, the increasing role of image registration and motion estimation algorithms for the interpretation of complex 4D medical image sequences is illustrated. Different 4D CT image acquisition techniques and conceptually different motion estimation algorithms are presented. The clinical relevance is demonstrated by means of example applications which are related to the radiation therapy of thoracic and abdominal tumors. The state of the art and perspectives are shown by an insight into the current field of research. The book is addressed to biomedical engineers, medical physicists, researchers and physicians working in the fields of medical image analysis, radiology and radiation therapy.
There is a growing global awareness of the link between good diet and health. This fascinating book reviews various functional foods or nutraceuticals and the bio-active compounds they contain in order to identify the role of bioactive compounds such as nisin, micronutrients, and hydrocolloids in the diet in overall human health. It also provides up-to-date information on functional elements like antioxidants, dietary fibres, pre & probiotics, vitamins and mineral-enriched foods in the human diet. Consisting of fifteen chapters, the book offers a systematic review of the key factors in the preparation of functional foods from selected sources, and also describes the processing, preservation and packaging of a range of functional food products. This book is a valuable resource for students and researchers working in the field of food science, food technology, and nutrition, as well as for industry experts. |
You may like...
Muscle Cell and Tissue - Novel Molecular…
Kunihiro Sakuma
Hardcover
AI-Enabled Smart Healthcare Using…
Rahul Kumar Chaurasiya, Dheeraj Agrawal, …
Hardcover
R11,201
Discovery Miles 112 010
Fibroblasts - Advances in Inflammation…
Mojca Frank Bertoncelj, Katja Lakota
Hardcover
Signal Processing in Medicine and…
Iyad Obeid, Ivan Selesnick, …
Hardcover
R3,308
Discovery Miles 33 080
Modern Applications in Membrane Science…
Isabel Escobar, Bart Van der Bruggen
Hardcover
R5,419
Discovery Miles 54 190
Engineered Biomaterials: Progress And…
P A Hassan, Biji Balakrishnan, …
Hardcover
R5,643
Discovery Miles 56 430
Advancements in Bio-Medical Image…
Rijwan Khan, Indrajeet Kumar
Hardcover
R8,408
Discovery Miles 84 080
|