![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Nursing & ancillary services > Biomedical engineering > General
This book describes a new family of bio-polymer gels made from cytoskeletal proteins - actin, microtubule, and tropomyosin. The importance of the gel state with multi-scale hierarchical structure is emphasized to utilize emergent functions in living organisms. Detailed protocol of gel preparation, specified method of structure investigation, and dynamic studies of self-organization, self-healing, synchronized oscillating, and autonomous motility functions are introduced together with biomimetic functions of synthetic hydrogels.
This book provides an insight into recent technological trends and innovations in mobility solutions and platforms to improve mobility of visually impaired people. The authors' goal is to help to contribute to the social and societal inclusion of the visually impaired. The book's topics include, but are not limited to, obstacle detection systems, indoor and outdoor navigation, transportation sustainability systems, and hardware/devices to aid visually impaired people. The book has a strong focus on practical applications, tested in a real environment. Applications include city halls, municipalities, and companies that can keep up to date with recent trends in platforms, methodologies and technologies to promote urban mobility. Also discussed are broader realms including education, health, electronics, tourism, and transportation. Contributors include a variety of researchers and practitioners around the world. Features practical, tested applications of technological mobility solutions for visual impaired people; Presents topics such as obstacle detection systems, urban mobility, smart home services, and ambient assisted living; Includes a number of application examples in education, health, electronics, tourism, and transportation.
The book provides an introduction to the basics of fungi, discussing various types ranging from edible mushrooms to Neurospora - a model system for genetics and epigenetics. After addressing the classification and biodiversity of fungi, and fungi in different ecological niches, it describes the latest applications of fungi, their role in sustainable environments and in alleviating stress in plants, as well as their role in causing plant and animal diseases. Further chapters explore the advances in fungal interactions research and their implications for various systems, and discuss plant-pathogen interactions. The book also features a section on bioprospecting, and is an extremely interesting and informative read for anybody involved in the field of mycology, microbiology and biotechnology teaching and research.
This book shares the knowledge of active and prestigious worldwide researchers and scholars in the field of healthcare monitoring as authors investigate historical developments, summarize latest advancements, and envision future prospects on wearable, attachable, and invisible devices that monitor diverse physiological information. The coverage of the book spans multiple disciplines, from biomechanics, to bioelectricity, biochemistry, biophysics and biomaterials. There is also wide coverage of various physical and chemical quantities such as electricity, pressure, flow, motion, force, temperature, gases, and biomarkers. Each chapter explores the background of a specific monitoring device, as well as its physical and chemical principles and instrumentation, signal processing and data analysis, achieved outcomes and application scenarios, and future research topics. There are chapters on: Electrocardiograms, electroencephalograms, and electromyograms Measurement of flow phenomenon Latest wearable technologies for the quantification of human motion Various forms of wearable thermometers Monitoring of gases and chemical substances produced during metabolism...and more! This book is appropriate and accessible for students and scientists, as well as researchers in biomedical engineering, computer engineers, healthcare entrepreneurs, administrative officers, policy makers, market vendors, and healthcare personnel. It helps to provide us with insights into future endeavors, formulate innovative businesses and services, and will help improve people's health and quality of life.
Optimal management of device associated infections requires a collaborative approach among surgical and medical specialists-a need that is central to this issue of Infectious Diseases Clinics of North America.? In addition to the epidemiology, management, and prevention of commonly encountered device associated infections, each review offers technical background on specific devices and related operative procedures. Areas of ongoing investigation are highlighted including innovative concepts for the prevention of biofilm formation and biofilm directed therapeutics.? Emerging issues related to reuse of medical devices in resource limited settings are also considered.
This book brings together reviews from international experts who are exploring the biological activities of nanomaterials for medical applications or to better understand nanotoxicity. Topics include but are not limited to the following: 1) mechanistic understanding of nanostructure-bioactivity relationships; 2) the regulation of nanoparticles' bioactivity by means of chemical modification; 3) the new methodologies and standard methods used to assess nanoparticles' bioactivity; 4) the mechanisms involved in nanoparticle-biomolecule interactions and nanoparticle-cell interactions; and 5) biomedical applications of nanotechnology. The book will be a valuable resource for a broad readership in various subfields of chemical science, engineering, biology, environment, and medicine.
This volume in the "Methods in Enzymology" series
comprehensively covers Infectious Diseases, Immunotheraphy, Gene
Medicine, Diagnostics and Toxicology of Nanomedicine.With an
international board of authors, this volume is split into sections
that cover subjects such as Nanomedicines in Immunotherapy,
Nanomedicine toxicity, and Diagnostic Nanomedicine.
The book provides an up-to-date overview of the diverse medical applications of advanced polymers. The book opens by presenting important background information on polymer chemistry and physicochemical characterization of polymers. This serves as essential scientific support for the subsequent chapters, each of which is devoted to the applications of polymers in a particular medical specialty. The coverage is broad, encompassing orthopedics, ophthalmology, tissue engineering, surgery, dentistry, oncology, drug delivery, nephrology, wound dressing and healing, and cardiology. The development of polymers that enhance the biocompatibility of blood-contacting medical devices and the incorporation of polymers within biosensors are also addressed. This book is an excellent guide to the recent advances in polymeric biomaterials and bridges the gap between the research literature and standard textbooks on the applications of polymers in medicine.
During the last years computational methods lead to new approaches that can be applied within medical practice. Based on the tremendous advances in medical imaging and high-performance computing, virtual testing is able to help in medical decision processes or implant designs. Current challenges in medicine and engineering are related to the application of computational methods to clinical medicine and the study of biological systems at different scales. Additionally manufacturers will be able to use computational tools and methods to predict the performance of their medical devices in virtual patients. The physical and animal testing procedures could be reduced by virtual prototyping of medical devices. Here simulations can enhance the performance of alternate device designs for a range of virtual patients. This will lead to a refinement of designs and to safer products. This book summarizes different aspects of approaches to enhance function, production, initialization and complications of different types of implants and related topics.
Written by leading optical phase microscopy experts, this book is a comprehensive reference to phase microscopy and nanoscopy techniques for biomedical applications, including differential interference contrast (DIC) microscopy, phase contrast microscopy, digital holographic microscopy, optical coherence tomography, tomographic phase microscopy, spectral-domain phase detection, and nanoparticle usage for phase nanoscopy The Editors show biomedical and optical engineers how to use
phase microscopy for visualizing unstained specimens, and support
the theoretical coverage with applied content and examples on
designing systems and interpreting results in bio- and nanoscience
applications. Tips/advice on building systems and working with advanced imaging biomedical techniques, including interpretation of phase images, and techniques for quantitative analysis based on phase microscopy. Interdisciplinary approach that combines optical engineering, nanotechnology, biology and medical aspects of this topic. Each chapterincludes practical implementations and worked examples. "
Implant and device manufacturers are increasingly facing the
challenge of proving that their products are safe and
biocompatible, and that they will perform as expected.
Biocompatibility and performance of medical devices provides an
essential guide to the performance analysis of these vital devices.
This book provides the bridge between engineering design and medical device development. There is no single text that addresses the plethora of design issues a medical devices designer meets when developing new products or improving older ones. It addresses medical devices' regulatory (FDA and EU) requirements--some of the most stringent engineering requirements globally. Engineers failing to meet these requirements can cause serious harm to users as well as their products commercial prospects. This Handbook shows the essential methodologies medical designers must understand to ensure their products meet requirements. It brings together proven design protocols and puts them in an explicit medical context based on the author's years of academia (R&D phase) and industrial (commercialization phase) experience. This design methodology enables engineers and medical device manufacturers to bring new products to the marketplace rapidly.
This book describes for researchers in the fields of compiler technology, design and test, and electronic design automation the new area of digital microfluidic biochips (DMBs), and thus offers a new application area for their methods. The authors present a routing-based model of operation execution, along with several associated compilation approaches, which progressively relax the assumption that operations execute inside fixed rectangular modules. Since operations can experience transient faults during the execution of a bioassay, the authors show how to use both offline (design time) and online (runtime) recovery strategies. The book also presents methods for the synthesis of fault-tolerant application-specific DMB architectures. * Presents the current models used for the research on compilation and synthesis techniques of DMBs in a tutorial fashion; * Includes a set of "benchmarks", which are presented in great detail and includes the source code of most of the techniques presented, including solutions to the basic compilation and synthesis problems; * Discusses several new research problems in detail, using numerous examples.
The book has focussed on the different aspects of sensing technology, i.e. high reliability, adaptability, recalibration, information processing, data fusion, validation and integration of novel and high performance sensors specifically aims to use to inspect mechanical health of structure and similar applications. This book is dedicated to Sensing systems for Structural Health Monitoring offers to variety of users, namely, Master and PhD degree students, researchers, practitioners, especially Civil and Construction engineers. The book will provide an opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field.
The application of methodological approaches and mathematical formalisms proper to Physics and Engineering to investigate and describe biological processes and design biological structures has led to the development of many disciplines in the context of computational biology and biotechnology. The best known applicative domain is tissue engineering and its branches. Recent domains of interest are in the field of biophysics, e.g.: multiscale mechanics of biological membranes and films and filaments; multiscale mechanics of adhesion; biomolecular motors and force generation. Modern hypotheses, models, and tools are currently emerging and resulting from the convergence of the methods and phylosophycal apporaches of the different research areas and disciplines. All these emerging approaches share the purpose of disentangling the complexity of organisms, tissues, and cells and mimiking the function of living systems. The contributions presented in this book are current research highlights of six challenging and representative applicative domains of phyisical, engineering, and computational approaches in medicine and biology, i.e tissue engineering, modelling of molecular structures, cell mechanics and cell adhesion processes, cancer physics, and physico-chemical processes of metabolic interactions. Each chapter presents a compendium or a review of the original results achieved by authors in the last years. Furthermore, the book also wants to pinpoint the questions that are still open and that could propel the future research.
This book offers a comprehensive treatment of nonlocal elasticity theory as applied to the prediction of the mechanical characteristics of various types of biological and non-biological nanoscopic structures with different morphologies and functional behaviour. It combines fundamental notions and advanced concepts, covering both the theory of nonlocal elasticity and the mechanics of nanoscopic structures and systems. By reporting on recent findings and discussing future challenges, the book seeks to foster the application of nonlocal elasticity based approaches to the emerging fields of nanoscience and nanotechnology. It is a self-contained guide, and covers all relevant background information, the requisite mathematical and computational techniques, theoretical assumptions, physical methods and possible limitations of the nonlocal approach, including some practical applications. Mainly written for researchers in the fields of physics, biophysics, mechanics, and nanoscience, as well as computational engineers, the book can also be used as a reference guide for senior undergraduate and graduate students, as well as practicing engineers working in a range of areas, such as computational condensed matter physics, computational materials science, computational nanoscience and nanotechnology, and nanomechanics.
There have been important developments in materials and therapies
for the treatment of spinal conditions. Biomaterials for spinal
surgery summarises this research and how it is being applied for
the benefit of patients.
The introduction of low temperature plasma technology to medical research and to the healthcare arena in general is set to revolutionise the way we cure diseases. This innovative medium offers a valid and advantageous replacement of traditional chemical-based medications. Its application in the inactivation of pathogens in particular, avoids the recurrent problem of drug resistant microorganisms. This is the first book dedicated exclusively to the emerging interdisciplinary field of plasma medicine. The opening chapters discuss plasmas and plasma chemistry, the fundamentals of non-equilibrium plasmas and cell biology. The rest of the book is dedicated to current applications, illustrating a plasma-based approach to wound healing, electrosurgery, cancer treatment and even dentistry. The text provides a clear and integrated introduction to plasma technology and has been devised to answer the needs of researchers from different communities. It will appeal to graduate students and physicists, engineers, biologists, medical doctors and biochemists.
This book presents a wealth of insights and new conceptualizations for the development of "Assistive Technologies for the Interaction of the Elderly." The book arranges the chaptersaccording to important aspects of maximizing the use value in innovation projects. Every chapter will include an executive summary reporting the main results, a storyline using everyday language, and scientific excursions, wherever useful. The book shows how an innovation project should be structured towards maximum use value and how a project should be structured in order to make a difference. It describes the useful categorization of the large group of the elderly to maximize the focus of the innovation and demonstrates the user involvement into innovation activities. Of course, the assessment of such innovative projects is discussed as well as the lessons learned . The book also explores the business opportunities and the financial evaluation of aspects of assistive technology. "
This volume presents a review of the latest numerical techniques used to identify ligand binding and protein complexation sites. It should be noted that there are many other theoretical studies devoted to predicting the activity of specific proteins and that useful protein data can be found in numerous databases. The aim of advanced computational techniques is to identify the active sites in specific proteins and moreover to suggest a generalized mechanism by which such protein-ligand (or protein-protein) interactions can be effected. Developing such tools is not an easy task - it requires extensive expertise in the area of molecular biology as well as a firm grasp of numerical modeling methods. Thus, it is often viewed as a prime candidate for interdisciplinary research.
Lab-on-a-Chip (LOC) technology is a rapidly expanding area of science. It has applications in biotechnology, medicine, clinical diagnostics, chemical engineering, and pharmaceutics. As the LOC systems increase in importance and complexity, it is important for scientists to become familiar not only with the technology, but also with the potential applications. The editors of this book have brought together expert authors from many countries to produce a comprehensive volume focusing on the applications of LOC technology in the biomedical and life sciences. The first section includes chapters on LOC biomolecule separation. Separation of biomolecules is an important element of various clinical laboratories and is required for many "down stream" analytical applications. Various electrophoresis and liquid chromatography applications for proteins and DNA are described, as well as methods for cell separation, with an emphasis on blood cell separation, which have many important clinical applications. The second part includes chapters on analysis and manipulation technologies. Authors describe protein, genetic (mainly PCR), and transcriptome analysis with examples from research and clinical applications, as well as cell manipulation and analysis including cell viability analysis and microorganism capturing. A skillful selection of topics of exceptional importance to current science ensures that this book will be of major value to a wide range of molecular biologists, clinical scientists, microbiologists, biochemists, and anyone interested in LOC technology or developing applications for LOC devices.
This volume represents a valuable collection of mobile health (mHealth) emerging technologies. Chapters focus on three main areas of mHealth: technologies for in vitro and environmental testing, mHealth technologies for physiological and anatomical measurements and mHealth technologies for imaging. This book is designed to make mHealth more accessible and understandable to engineers, medical professionals, molecular biologists, chemical, and physical science researchers developing mHealth technologies. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, technical information about materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Mobile Health Technologies : Methods in Molecular Biology aims to improve access to medical procedures including early detection, diagnostics and treatment through the development of new portable and accessible devices, and that this will lead to improved health technologies.
This book reviews the current understanding of the mechanical, chemical and biological processes that are responsible for the degradation of a variety of implant materials. All 18 chapters will be written by internationally renowned experts to address both fundamental and practical aspects of research into the field. Different failure mechanisms such as corrosion, fatigue, and wear will be reviewed, together with experimental techniques for monitoring them, either in vitro or in vivo. Procedures for implant retrieval and analysis will be presented. A variety of biomaterials (stainless steels, titanium and its alloys, nitinol, magnesium alloys, polyethylene, biodegradable polymers, silicone gel, hydrogels, calcium phosphates) and medical devices (orthopedic and dental implants, stents, heart valves, breast implants) will be analyzed in detail. The book will serve as a broad reference source for graduate students and researchers studying biomedicine, corrosion, surface science, and electrochemistry.
|
You may like...
Biomarkers in Cancer Detection and…
Ranbir Chander Sobti, Masatoshi Watanabe, …
Paperback
R3,268
Discovery Miles 32 680
Targeting Chronic Inflammatory Lung…
Kamal Dua, Philip M. Hansbro, …
Paperback
R4,033
Discovery Miles 40 330
Handbook of Electronic Assistive…
Ladan Najafi, Donna Cowan
Paperback
Definitions of Biomaterials for the…
Xingdong Zhang, David Williams
Paperback
R2,164
Discovery Miles 21 640
Healthcare Data Analytics and Management
Nilanjan Dey, Amira Ashour, …
Paperback
Statistical, Mapping and Digital…
Gilles Maignant, Pascal Staccini
Hardcover
R2,198
Discovery Miles 21 980
Anaerobiosis and Stemness - An…
Zoran Ivanovic, Marija Vlaski
Hardcover
R2,274
Discovery Miles 22 740
Stimuli Responsive Polymeric…
Abdel Salam Hamdy Makhlouf, Nedal Yusuf Abu-Thabit
Hardcover
R5,205
Discovery Miles 52 050
Biomaterials and Regenerative Medicine…
T V Chirila, Damien Harkin
Hardcover
|