![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Nursing & ancillary services > Biomedical engineering > General
Portable Biosensors and Point-of-Care Systems describes the principles, design and applications of a new generation of analytical and diagnostic biomedical devices, characterized by their very small size, ease of use, multi-analytical capabilities and speed to provide handheld and mobile point-of-care (POC) diagnostics. The book is divided in four Parts. Part I is an in-depth analysis of the various technologies upon which portable diagnostic devices and biosensors are built. In Part II, advances in the design and optimization of special components of biosensor systems and handheld devices are presented. In Part III, a wide scope of applications of portable biosensors and handheld POC devices is described, ranging from the support of primary healthcare to food and environmental safety screening. Diverse topics are covered, including counterterrorism, travel medicine and drug development. Finally, Part IV of the book is dedicated to the presentation of commercially available products including a review of the products of point-of-care in-vitro-diagnostics companies, a review of technologies which have achieved a high Technology Readiness Level, and a special market case study of POC infusion systems combined with intelligent patient monitoring. This book is essential reading for researchers and experts in the healthcare diagnostic and analytical sector, and for electronics and material engineers working on portable sensors.
This volume considers the most common materials used in medical devices. State-of-the-art reference information is given for implant materials including stainless steels, cobalt-base alloys, titanium, shape memory alloys, noble metals, ceramics, and polymers. Examples of materials- and mechanical-based failures of medical devices provide lessons learned in the failure analysis section. Biotribology and implant wear are covered extensively, including clinical wear and biological aspects of implant wear. A detailed look at corrosion includes its effects, corrosion products, mechanically assisted corrosion and corrosion fatigue. Biocompatibility is also discussed at length including biocompatibility of ceramics and polymers. Engineers with little exposure to medical and biomedical engineering will find this book particularly useful. Volume 23 is a replacement for the Handbook of Materials for Medical Devices edited by J.R. Davis (ASM, 2003). The new volume features brand-new content that greatly expands the scope and depth of coverage, including a more in-depth discussion of materials and focus on applications.
Control Applications for Biomedical Engineering Systems presents different control engineering and modeling applications in the biomedical field. It is intended for senior undergraduate or graduate students in both control engineering and biomedical engineering programs. For control engineering students, it presents the application of various techniques already learned in theoretical lectures in the biomedical arena. For biomedical engineering students, it presents solutions to various problems in the field using methods commonly used by control engineers.
Biomedical signal processing in the medical field has helped optimize patient care and diagnosis within medical facilities. As technology in this area continues to advance, it has become imperative to evaluate other ways these computation techniques could be implemented. Computational Tools and Techniques for Biomedical Signal Processing investigates high-performance computing techniques being utilized in hospital information systems. Featuring comprehensive coverage on various theoretical perspectives, best practices, and emergent research in the field, this book is ideally suited for computer scientists, information technologists, biomedical engineers, data-processing specialists, and medical physicists interested in signal processing within medical systems and facilities.
Metabolomics for Biomedical Research brings together recent progress on study design, analytics, biostatistics and bioinformatics for the success of metabolomics research. Metabolomics represents a very interdisciplinary research prominent in the functional analyses of living systems; hence, this book focuses on translation and medical aspects. The book discusses topics such as biomarkers and their requirements to be used in medical research, with the parameters and approaches on how to validate their quality; and animal models and other approaches, as stem cells and organoid culture. Additionally, it explains how metabolomics may be applied in prediction of individual response to drug or disease progression. This book is a valuable source for researchers on systems biology and other members of biomedical field interested in metabolism-oriented studies for medical research.
The book discusses the complex interactions between plants and their associated microbial communities. It also elucidates the ways in which these microbiomes are connected with the plant system, and how they affect plant health. The different chapters describe how microbiomes affect plants with regard to immunity, disease conditions, stress management and productivity. In addition, the book describes how an 'additional plant genome' functions as a whole organ system of the host, and how it presents both challenges and opportunities for the plant system. Moreover, the book includes a dedicated section on using omics tools to understand these interactions, and on exploiting them to their full potential.
This book highlights numerical models as powerful tools for the optimal design of Micro-Electro-Mechanical Systems (MEMS). Most MEMS experts have a background in electronics, where circuit models or behavioral models (i.e. lumped-parameter models) of devices are preferred to field models. This is certainly convenient in terms of preliminary design, e.g. in the prototyping stage. However, design optimization should also take into account fine-sizing effects on device behavior and therefore be based on distributed-parameter models, such as finite-element models. The book shows how the combination of automated optimal design and field-based models can produce powerful design toolboxes for MEMS. It especially focuses on illustrating theoretical concepts with practical examples, fostering comprehension through a problem-solving approach. By comparing the results obtained using different methods, readers will learn to identify their respective strengths and weaknesses. In addition, special emphasis is given to evolutionary computing and nature-inspired optimization strategies, the effectiveness of which has already been amply demonstrated. Given its scope, the book provides PhD students, researchers and professionals in the area of computer-aided analysis with a comprehensive, yet concise and practice-oriented guide to MEMS design and optimization. To benefit most from the book, readers should have a basic grasp of electromagnetism, vector analysis and numerical methods.
Before the integration of expert systems in biomedical science, complex problems required human expertise to solve them through conventional procedural methods. Advancements in expert systems allow for knowledge to be extracted when no human expertise is available and increases productivity through quick diagnosis. Expert System Techniques in Biomedical Science Practice is an essential scholarly resource that contains innovative research on the methods by which an expert system is designed to solve complex problems through the automation of decision making through the use of if-then-else rules rather than conventional procedural methods. Featuring coverage on a broad range of topics such as image processing, bio-signals, and cognitive AI, this book is a vital reference source for computer engineers, information technologists, biomedical engineers, data-processing specialists, medical professionals, and industrialists within the fields of biomedical engineering, pervasive computing, and natural language processing.
This thesis demonstrates a technology that enables pipetting-free high-throughput screening (HTS) on a miniaturized platform, eliminating the need for thousands of one-by-one pipetting and conventional liquid handling systems. This platform enhances accessibility to HTS and enables HTS to be used in small-to-medium scale laboratories. In addition, it allows large-scale combinatorial screening with a small number of valuable cells, such as patients' primary cancer cells. This technique will have a high impact for widespread use of HTS in the era of personalized medicine. In this thesis, the author firstly describes the need and concept of 'partipetting' for pipetting-free HTS platform. It is realized by the one-step pipetting and self-assembly of encoded drug-laden microparticles (DLPs) on the microwells. Next, the technical implementations required for the platform demonstration are described. It includes preparation of encoded DLPs, plastic chip fabrication, and realization of automated system. Lastly, screening of sequential drug combinations using this platform is demonstrated. This shows the potential of the proposed technology for various applications.
Clinical and Basic Neurogastroenterology and Motility is a state-of-the-art, lucidly written, generously illustrated, landmark publication that comprehensively addresses the underlying mechanisms and management of common adult and pediatric motility disorders. These problems affect 50% of the population and include conditions such as dysphagia, achalasia, gastroesophageal reflux disease, gastroparesis, irritable bowel syndrome (IBS), gas and bloating, SIBO, constipation and fecal incontinence. The book brings together international experts and clinician scientists, epitomizing their years of wisdom into a concise yet practical text that is delivered in two distinct sections, basic and clinical. It fulfills a large unmet need, and bridges a long-awaited knowledge gap among trainees, clinicians, scientists, nurses and technicians, earnestly engaged in this field.
This edited volume presents fundamentals as well as applications of oculomotor methods in industrial and clinical settings. The topical spectrum covers 1.) basics and background material, 2.) methods such as recording techniques, markov models, Levy flights, pupillometry and many more, as well as 3.) a broad range of applications in clinical and industrial settings. The target audience primarily comprises research experts and practitioners, but the book may also be beneficial for graduate students.
Technology has made it possible to bridge such distinct fields as engineering and medicine, creating systems with benefits that people could have never before imagined. Intelligent Medical Technologies and Biomedical Engineering: Tools and Applications helps young researchers and developers understand the basics of the field while highlighting the various developments over the last several years. Broad in scope and comprehensive in depth, this volume serves as a base text for any project or work into the domain of medical diagnosis or other areas of medical engineering.
This book focuses on the design, development, and characterization of a compact magnetic laser scanner for microsurgical applications. In addition, it proposes a laser incision depth controller to be used in soft tissue microsurgeries. The use of laser scanners in soft tissue microsurgery results in high quality ablations with minimal thermal damage to surrounding tissue. However, current scanner technologies for microsurgery are limited to free-beam lasers, which require direct line-of-sight to the surgical site, from outside the patient. Developing compact laser micromanipulation systems is crucial to introducing laser-scanning capabilities in hard-to-reach surgical sites, e.g., vocal cords. In this book, the design and fabrication of a magnetically actuated endoscopic laser scanner have been shown, one that introduces high-speed laser scanning for high quality, non-contact tissue ablations in narrow workspaces. Static and dynamic characterization of the system, its teleoperation through a tablet device, and its control modelling for automated trajectory executions have been shown using a fabricated and assembled prototype. Following this, the book discusses how the laser position and velocity control capabilities of the scanner can be used to design a laser incision depth controller to assist surgeons during operations.
Natural Polysaccharides in Drug Delivery and Biomedical Applications provides a fundamental overview of natural polysaccharides, their sources, extraction methodologies, and characterizations. It covers specific natural polysaccharides and their effective application in drug delivery and biomedical use. Additionally, chapters in the book discuss key topics including the sources and extraction methodologies of natural polysaccharides, their role in tissue engineering applications, polysaccharide-based nanoparticles in biomedical applications, and their role in the delivery of anticancer drugs. Written by industry leaders and edited by experts, this book emphasizes recent advances made in the field. Natural Polysaccharides in Drug Delivery and Biomedical Applications provides academics, researchers, and pharmaceutical health care professionals with a comprehensive book on polysaccharides in pharmaceutical delivery process.
This book provides a comprehensive guide to the state-of-the-art in cardiovascular computing and highlights novel directions and challenges in this constantly evolving multidisciplinary field. The topics covered span a wide range of methods and clinical applications of cardiovascular computing, including advanced technologies for the acquisition and analysis of signals and images, cardiovascular informatics, and mathematical and computational modeling.
Delivery of Therapeutics for Biogerontological Interventions: From Concepts to Experimental Design provides tactics on how to facilitate planning and research in interventive biogerontology. The book helps create clearer directions for the translation of existing advances in delivery technologies, from lab to practice. It is ideal as a starting point for scientists, clinicians and those interested in the field of biogerontology, biomedicine or nanotechnology, comprehensively discussing how to translate bench works to practicable tactics that retard the aging process. Using support from recent advances reported in literature, this title takes advantage of delivery technologies to develop biogerontological interventions, from concept to experimental design.
This book compiles the fundamentals, applications and viable product strategies of biomimetic lipid membranes into a single, comprehensive source. It broadens its perspective to interdisciplinary realms incorporating medicine, biology, physics, chemistry, materials science, as well as engineering and pharmacy at large. The book guides readers from membrane structure and models to biophysical chemistry and functionalization of membrane surfaces. It then takes the reader through a myriad of surface-sensitive techniques before delving into cutting-edge applications that could help inspire new research directions. With more than half the world's drugs and various toxins targeting these crucial structures, the book addresses a topic of major importance in the field of medicine, particularly biosensor design, diagnostic tool development, vaccine formulation, micro/nano-array systems, and drug screening/development. Provides fundamental knowledge on biomimetic lipid membranes; Addresses some of biomimetic membrane types, preparation methods, properties and characterization techniques; Explains state-of-art technological developments that incorporate microfluidic systems, array technologies, lab-on-a-chip-tools, biosensing, and bioprinting techniques; Describes the integration of biomimetic membranes with current top-notch tools and platforms; Examines applications in medicine, pharmaceutical industry, and environmental monitoring.
Plant endophytes are a potential source for the production of bioactive compounds that can fight against devastating diseases in both plants and humans. Among these endophytic microorganisms, endophytic fungi are one of the dominant group of microorganisms with a potential role in plant growth promotion and the discovery of noble bioactive natural products. Endophytic fungi possess several bioactivities like anticancer, antimicrobial, insecticidal, plant growth stimulants, crop protection, phytoremediation, etc. Presence of modular biosynthetic genes clusters like PKS and NRPS in several endophytic fungi underscores the need to understand and explore such organisms. This volume presents and demonstrates the applied aspects of endophytic fungi. Practical applications of such endophytes are discussed in detail, including studies in pharmaceutical development and agricultural management of important microbial diseases. The beneficial effects that endophytic fungi provide to host plants-enhancing growth, increasing fitness, strengthening tolerance to abiotic and biotic stresses through secondary metabolites-are also discussed. The reader is provided with a comprehensive and detailed understanding of such relationships between endophytic fungi and their host.
Stem Cells and Biomaterials for Regenerative Medicine addresses the urgent need for a compact source of information on both the cellular and biomaterial aspects of regenerative medicine. By developing a mutual understanding between three separately functioning areas of science-medicine, the latest technology, and clinical economics-the volume encourages interdisciplinary relationships that will lead to solutions for the significant challenges faced by today's regenerative medicine. Users will find sections on the homeostatic balance created by apoptosis and proliferating tissue stem cells, the naturally regenerative capacities of various tissue types, the potential regenerative benefits of iPS-generation, various differentiation protocols, and more. Written in easily accessbile language, this volume is appropriate for any professional or medical staff looking to expand their knowledge with regard to stem cells and regenerative medicine.
No longer confined to medical devices, medical software has become a pervasive technology giving healthcare operators access to clinical information stored in electronic health records and clinical decision support systems, supporting robot-assisted telesurgery, and providing the technology behind ambient assisted living. These systems and software must be designed, built and maintained according to strict regulations and standards to ensure that they are safe, reliable and secure. Engineering High Quality Medical Software illustrates how to exploit techniques, methodologies, development processes and existing standards to realize high-confidence medical software. After an introductory survey of the topic the book covers global regulations and standards (including EU MDD 93/42/EEC, FDA Title 21 of US CFR, ISO 13485, ISO 14971, IEC 52304, IEEE 1012 and ISO/IEC 29119), verification and validation techniques and techniques, and methodologies and engineering tasks for the development, configuration and maintenance of medical software.
The Science of Hormesis in Health and Longevity provides a comprehensive review of mild stress-induced physiological hormesis and its role in the maintenance and promotion of health. Coverage includes the underlying mechanisms of hormesis, including details of stress-response signaling, an enriched environment, positive challenges and dose-response mechanisms, amongst others. Research from top experts is presented to provide suggestions for developing novel therapeutic strategies, along with lifestyle interventions to promote health and homoeostasis. Researchers in aging and physiology, gerontologists, clinicians and medical students will find this a valuable addition for their work.
Implementing Precision Medicine in Best Practices of Chronic Airway Diseases provides a comprehensive overview of the application of precision medicine in airway diseases with a goal of promoting optimal control of disease, higher patient satisfaction and disease prevention. As medical research continues to fund this area, the book highlights the need for implementation of the principles of precision medicine into the bedside management of chronic airway diseases. It is clear that chronic airway diseases are heterogeneous and that a personalized approach is warranted whereby treatment is tailored to the level of the individual patient. Written for basic researchers, medical doctors and other healthcare practitioners this book provides guidance on the implementation of the principles of precision medicine into further research and daily clinical practice. |
You may like...
Advanced Machine Vision Paradigms for…
Tapan K. Gandhi, Siddhartha Bhattacharyya, …
Paperback
R3,019
Discovery Miles 30 190
Artificial Intelligence for Signal…
Abhinav Sharma, Arpit Jain, …
Hardcover
R4,233
Discovery Miles 42 330
Making a Machine That Sees Like Us
Zygmunt Pizlo, Yunfeng Li, …
Hardcover
R2,256
Discovery Miles 22 560
Multi-band Polarization Imaging and…
Yongqiang Zhao, Chen Yi, …
Hardcover
Computer Vision and Recognition Systems…
Chiranji Lal Chowdhary, Mamoun Alazab, …
Hardcover
|