Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Medicine > Nursing & ancillary services > Biomedical engineering > General
Smart Homes (SH) offer a promising approach to assisted living for the ageing population. Yet the main obstacle to the rapid development and deployment of Smart Home (SH) solutions essentially arises from the nature of the SH field, which is multidisciplinary and involves diverse applications and various stakeholders. Accordingly, an alternative to a one-size-fits-all approach is needed in order to advance the state of the art towards an open SH infrastructure. This book makes a valuable and critical contribution to smart assisted living research through the development of new effective, integrated, and interoperable SH solutions. It focuses on four underlying aspects: (1) Sensing and Monitoring Technologies; (2) Context Interference and Behaviour Analysis; (3) Personalisation and Adaptive Interaction, and (4) Open Smart Home and Service Infrastructures, demonstrating how fundamental theories, models and algorithms can be exploited to solve real-world problems. This comprehensive and timely book offers a unique and essential reference guide for policymakers, funding bodies, researchers, technology developers and managers, end users, carers, clinicians, healthcare service providers, educators and students, helping them adopt and implement smart assisted living systems.
This volume of the series Cardiac and Vascular Biology presents the most relevant aspects of vascular mechanobiology along with many more facets of this fascinating, timely and clinically highly relevant field. Mechanotransduction, mechanosensing, fluid shear stress, hameodynamics and cell fate, are just a few topics to name. All important aspects of vascular mechanobiology in health and disease are reviewed by some of the top experts in the field. This volume, together with a second title on cardiac mechanobiology featured in this series, will be of high relevance to scientists and clinical researchers in the area of vascular biology, cardiology and biomedical engineering.
Before the integration of expert systems in biomedical science, complex problems required human expertise to solve them through conventional procedural methods. Advancements in expert systems allow for knowledge to be extracted when no human expertise is available and increases productivity through quick diagnosis. Expert System Techniques in Biomedical Science Practice is an essential scholarly resource that contains innovative research on the methods by which an expert system is designed to solve complex problems through the automation of decision making through the use of if-then-else rules rather than conventional procedural methods. Featuring coverage on a broad range of topics such as image processing, bio-signals, and cognitive AI, this book is a vital reference source for computer engineers, information technologists, biomedical engineers, data-processing specialists, medical professionals, and industrialists within the fields of biomedical engineering, pervasive computing, and natural language processing.
This book covers the latest research development in heart valve biomechanics and bioengineering, with an emphasis on novel experimentation, computational simulation, and applications in heart valve bioengineering. The most current research accomplishments are covered in detail, including novel concepts in valvular viscoelasticity, fibril/molecular mechanisms of tissue behavior, fibril kinematics-based constitutive models, mechano-interaction of valvular interstitial and endothelial cells, biomechanical behavior of acellular valves and tissue engineered valves, novel bioreactor designs, biomechanics of transcatheter valves, and 3D heart valve printing. This is an ideal book for biomedical engineers, biomechanics, surgeons, clinicians, business managers in the biomedical industry, graduate and undergraduate students studying biomedical engineering, and medical students.
This edited volume presents fundamentals as well as applications of oculomotor methods in industrial and clinical settings. The topical spectrum covers 1.) basics and background material, 2.) methods such as recording techniques, markov models, Levy flights, pupillometry and many more, as well as 3.) a broad range of applications in clinical and industrial settings. The target audience primarily comprises research experts and practitioners, but the book may also be beneficial for graduate students.
The Pigments from Microalgae Handbook presents the current state of knowledge on pigment production using microalgae-based processes, and covers both the scientific fundamentals of this technology and its practical applications. It addresses biology, chemistry, biochemistry, analysis and engineering aspects, as well as applications of natural pigments in photosynthetic organisms. The book also describes the analytical procedures associated with the characterization of pigments and the engineering aspects of microalgal pigment production. It considers the three major classes of pigments(chlorophylls, carotenoids and phycobiliproteins) produced and surveys the main commercial applications of these chemicals. The book offers a valuable source of information for industrial researchers and practitioners in industrial biotechnology, as it covers various engineering aspects of microalgal pigment production, such as bioreactors and bioprocesses, industrial extraction processes, and the bioeconomy of production including life-cycle assessment. The book will also be of interest to undergraduate and graduate students of biochemistry, food chemistry, and industrial microbiology.
This book provides a comprehensive guide to the state-of-the-art in cardiovascular computing and highlights novel directions and challenges in this constantly evolving multidisciplinary field. The topics covered span a wide range of methods and clinical applications of cardiovascular computing, including advanced technologies for the acquisition and analysis of signals and images, cardiovascular informatics, and mathematical and computational modeling.
This book commemorates the scientific contributions of distinguished statistician, Andrei Yakovlev. It reflects upon Dr. Yakovlev's many research interests including stochastic modeling and the analysis of micro-array data, and throughout the book it emphasizes applications of the theory in biology, medicine and public health. The contributions to this volume are divided into two parts. Part A consists of original research articles, which can be roughly grouped into four thematic areas: (i) branching processes, especially as models for cell kinetics, (ii) multiple testing issues as they arise in the analysis of biologic data, (iii) applications of mathematical models and of new inferential techniques in epidemiology, and (iv) contributions to statistical methodology, with an emphasis on the modeling and analysis of survival time data. Part B consists of methodological research reported as a short communication, ending with some personal reflections on research fields associated with Andrei and on his approach to science. The Appendix contains an abbreviated vitae and a list of Andrei's publications, complete as far as we know. The contributions in this book are written by Dr. Yakovlev's collaborators and notable statisticians including former presidents of the Institute of Mathematical Statistics and of the Statistics Section of the AAAS. Dr. Yakovlev's research appeared in four books and almost 200 scientific papers, in mathematics, statistics, biomathematics and biology journals. Ultimately this book offers a tribute to Dr. Yakovlev's work and recognizes the legacy of his contributions in the biostatistics community.
This book gathers selected studies on the industrial applications of glycoside hydrolases (GHs), presenting an updated classification of these enzymes, and discussing their structure, mechanisms, and various approaches to improve their catalytic efficiency. Further, it explains the various industrial applications of glycoside hydrolases in food, effluent treatment, biofuel production, and the paper and pulp industries. Lastly, the book provides a comparative analysis of glycoside hydrolases and discusses the role of metagenomics in the discovery of industrially important enzymes. As such it is a thought-provoking, instructive and informative resource for biochemists, enzymologists, molecular biologists and bioprocess technologists.
Technology has made it possible to bridge such distinct fields as engineering and medicine, creating systems with benefits that people could have never before imagined. Intelligent Medical Technologies and Biomedical Engineering: Tools and Applications helps young researchers and developers understand the basics of the field while highlighting the various developments over the last several years. Broad in scope and comprehensive in depth, this volume serves as a base text for any project or work into the domain of medical diagnosis or other areas of medical engineering.
This book presents peer-reviewed articles from the 20th International Symposium on Optomechatronic Technologies (ISOT 2019), held in Goa, India. The symposium brought together students, researchers, professionals, and academicians in the field of optomechatronics and related areas on a common platform conducive to academic interaction with business professionals.
This book covers multi-scale biomechanics for oncology, ranging from cells and tissues to whole organ. Topics covered include, but not limited to, biomaterials in mechano-oncology, non-invasive imaging techniques, mechanical models of cell migration, cancer cell mechanics, and platelet-based drug delivery for cancer applications. This is an ideal book for graduate students, biomedical engineers, and researchers in the field of mechanobiology and oncology. This book also: Describes how mechanical properties of cancer cells, the extracellular matrix, tumor microenvironment and immuno-editing, and fluid flow dynamics contribute to tumor progression and the metastatic process Provides the latest research on non-invasive imaging, including traction force microscopy and brillouin confocal microscopy Includes insight into NCIs' role in supporting biomechanics in oncology research Details how biomaterials in mechano-oncology can be used as a means to tune materials to study cancer
This book addresses the problem of EEG signal analysis and the need to classify it for practical use in many sample implementations of brain-computer interfaces. In addition, it offers a wealth of information, ranging from the description of data acquisition methods in the field of human brain work, to the use of Moore-Penrose pseudo inversion to reconstruct the EEG signal and the LORETA method to locate sources of EEG signal generation for the needs of BCI technology. In turn, the book explores the use of neural networks for the classification of changes in the EEG signal based on facial expressions. Further topics touch on machine learning, deep learning, and neural networks. The book also includes dedicated implementation chapters on the use of brain-computer technology in the field of mobile robot control based on Python and the LabVIEW environment. In closing, it discusses the problem of the correlation between brain-computer technology and virtual reality technology.
This edited book explores the use of technology to enable us to visualise the life sciences in a more meaningful and engaging way. It will enable those interested in visualisation techniques to gain a better understanding of the applications that can be used in visualisation, imaging and analysis, education, engagement and training. The reader will also be able to learn about the use of visualisation techniques and technologies for the historical and forensic settings. The reader will be able to explore the utilisation of technologies from a number of fields to enable an engaging and meaningful visual representation of the biomedical sciences. The chapters presented in this volume cover such a diverse range of topics, with something for everyone. We present here chapters on technology enhanced learning in neuroanatomy; 3D printing and surgical planning; changes in higher education utilising technology, decolonising the curriculum and visual representations of the human body in education. We also showcase how not to use protective personal equipment inspired by the pandemic; anatomical and historical visualisation of obstetrics and gynaecology; 3D modelling of carpal bones and augmented reality for arachnid phobias for public engagement. In addition, we also present face modelling for surgical education in a multidisciplinary setting, military medical museum 3D digitising of historical pathology specimens and finally computational fluid dynamics.
This is the second of two volumes that together provide an overview of the latest advances in the generation and application of digital twins in bioprocess design and optimization. Both processes have undergone significant changes over the past few decades, moving from data-driven approaches into the 21st-century digitalization of the bioprocess industry. Moreover, the high demand for biotechnological products calls for efficient methods during research and development, as well as during tech transfer and routine manufacturing. In this regard, one promising tool is the use of digital twins, which offer a virtual representation of the bioprocess. They reflect the mechanistics of the biological system and the interactions between process parameters, key performance indicators and product quality attributes in the form of a mathematical process model. Furthermore, digital twins allow us to use computer-aided methods to gain an improved process understanding, to test and plan novel bioprocesses, and to efficiently monitor them. This book focuses on the application of digital twins in various contexts, e.g. computer-aided experimental design, seed train prediction, and lifeline analysis. Covering fundamentals as well as applications, the two volumes offers the ideal introduction to the topic for researchers in academy and industry alike.
Plant endophytes are a potential source for the production of bioactive compounds that can fight against devastating diseases in both plants and humans. Among these endophytic microorganisms, endophytic fungi are one of the dominant group of microorganisms with a potential role in plant growth promotion and the discovery of noble bioactive natural products. Endophytic fungi possess several bioactivities like anticancer, antimicrobial, insecticidal, plant growth stimulants, crop protection, phytoremediation, etc. Presence of modular biosynthetic genes clusters like PKS and NRPS in several endophytic fungi underscores the need to understand and explore such organisms. This volume presents and demonstrates the applied aspects of endophytic fungi. Practical applications of such endophytes are discussed in detail, including studies in pharmaceutical development and agricultural management of important microbial diseases. The beneficial effects that endophytic fungi provide to host plants-enhancing growth, increasing fitness, strengthening tolerance to abiotic and biotic stresses through secondary metabolites-are also discussed. The reader is provided with a comprehensive and detailed understanding of such relationships between endophytic fungi and their host.
The book presents the proceedings of four conferences: The 24th International Conference on Image Processing, Computer Vision, & Pattern Recognition (IPCV'20), The 6th International Conference on Health Informatics and Medical Systems (HIMS'20), The 21st International Conference on Bioinformatics & Computational Biology (BIOCOMP'20), and The 6th International Conference on Biomedical Engineering and Sciences (BIOENG'20). The conferences took place in Las Vegas, NV, USA, July 27-30, 2020, and are part of the larger 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'20), which features 20 major tracks. Authors include academics, researchers, professionals, and students. Presents the proceedings of four conferences as part of the 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'20); Includes the tracks on Image Processing, Computer Vision, & Pattern Recognition, Health Informatics & Medical Systems, Bioinformatics, Computational Biology & Biomedical Engineering; Features papers from IPCV'20, HIMS'20, BIOCOMP'20, and BIOENG'20.
This volume explores how ionic liquids are used in different areas of biotechnology. It also provides insights on the interaction of ionic liquids with biomolecules and biomaterials. Ionic liquids have become essential players in the fields of synthesis, catalysis, extraction and electrochemistry, and their unique properties have opened a wide range of applications in biotechnology. Readers will discover diverse examples of the application of ionic liquids as solvents for biomaterials extraction and pretreatment, in enzymatic and whole cell catalysed reaction, and as activation agents for biocatalysis. Particular attention is given to the biologically functionalized ionic liquids employed in medical and pharmaceutical applications. Although ionic liquids are considered "green solvents", the contributing authors will also explore their environmental impact when applied to biotechnology. Chemical, biological and medical scientists interested in ionic liquids and biotechnology will find this work instructive and informative.
This book gathers papers presented at the 2019 Movement, Health & Exercise (MoHE) Conference and International Sports Science Conference (ISSC). The theme of this year's conference was "Enhancing Health and Sports Performance by Design". The content covers (but is not limited to) the following topics: exercise science; human performance; physical activity & health; sports medicine; sports nutrition; management & sports studies; and sports engineering & technology.
This book, written by key researchers in the field, provides a comprehensive analysis and overview of the state of the art of plasma-based cancer therapy. Recent progress in atmospheric plasmas has led to non-thermal or cold atmospheric plasma (CAP) devices with ion temperatures close to room temperature. In contrast to many existing anti-cancer approaches, CAP is a selective anti-cancer modality which has demonstrated significant potential in cancer therapy.Written by a global, cross-disciplinary group of leading researchers, this book covers basic theory, generation, diagnostics, and simulation of cold atmospheric plasma, as well as their clinical application in cancer therapy, immunotherapy, and future outlook, giving a complete picture of the field. It is meant for a broad audience, from students to engineers and scientists, who are interested in the emerging world of plasma medical applications. It presents recent advances, primary challenges, and future directions of this exciting, cutting-edge field.
This book focuses on the latest fluorescent materials for cell imaging. Cell imaging is a widely used basic technique that helps scientists gain a better understanding of biological functions through studies of cellular structure and dynamics. In the past decades, the development of a variety of new fluorescent materials has significantly extended the applications of cellular imaging techniques. This book presents recently developed fluorescent materials, including semiconductor quantum dots, carbon dots, silicon nanoparticles, metal nanoclusters, upconversion nanoparticles, conjugated polymers/polymer dots, aggregation-induced emission (AIE) probes, and coordination compounds, used for various cellular imaging purposes. It will appeal to cell biologists and other researchers in academia, industry and clinical settings who are interested in the technical development and advanced applications of fluorescence imaging in cells, tissues and organisms to explore the mechanisms of biological functions and diseases.
This book offers a comprehensive introduction to electron-based bioscience, biotechnology, and biocorrosion. It both explains the importance of electron flow during metabolic processes in microorganisms and provides valuable insights into emerging applications in various fields. In the opening section, readers will find up-to-date information on topics such as electron transfer reactions, extracellular electron transfer mechanisms, direct interspecies electron transfer, and electron uptake by sulfate-reducing bacteria. The focus then shifts to state-of-the-art advances and applications in the field of biotechnology. Here, the coverage encompasses e.g. progress in understanding electrochemical interactions between microorganisms and conductive particles, enzymatic reactions and their application in the bioproduction of useful chemicals, and the importance of redox balance for fatty acid production. In closing, the book addresses various aspects of the complex phenomenon of microbiologically induced corrosion, highlighting novel insights from the fields of electromicrobiology and electrochemistry and their implications.
Robotic animals are nowadays developed for various types of research, such as bio-inspired robotics, biomimetics and animal behavior studies. More specifically, in the case of collective animal behavior research, the robotic device can interact with animals by generating and exploiting signals relevant for social behavior. Once perceived by the animal society as conspecific, these robots can become powerful tools to study the animal behaviors, as they can at the same time monitor the changes in behavior and influence the collective choices of the animal society. In this book, we present novel robotized tools that can integrate shoals of fish in order to study their collective behaviors. We used the current state of the art on the zebrafish social behavior to define the specifications of the robots, and we performed stimuli analysis to improve their developments. Bio-inspired controllers were designed based on data extracted from experiments with zebrafish for the robots to mimic the zebrafish locomotion underwater. Experiments involving mixed groups of fish and robots qualified the robotic system to be integrated among a zebrafish shoal and to be able to influence the collective decisions of the fish. These results are very promising for the field of animal-robot interaction studies, as we showed the effect of the robots in long-duration experiments and repetitively, with the same order of response from the animals.
This informative book focuses on the nutritional value of potatoes and ways to improve it. With the world reeling under the burden of an ever-growing population, there is a pressing need for affordable and nutritious staples to feed the billions. Potatoes are grown in a broad range of countries around the world and can substantially contribute to future food security. Given the increasing consumption of potatoes, there is a need for a book that compiles information on and raises awareness of their nutritional value, while also encouraging their consumption. The respective chapters of this book cover the chemical composition, structure and health benefits of potatoes, as well as genetic modifications used to alter the concentration of relevant chemical compounds in them. The book provides an overview of potatoes as a nutrient-dense crop, and discusses important aspects such as the role of potatoes in human diet, how they can improve the overall health of individuals, their role in addressing malnutrition etc. Its chapters deal with topics such as carbohydrates and glycemic index, dietary fibers, vitamins, proteins, phenols, carotenoids, anthocyanins, minerals, lipids, glycoalkaloids, new health-promoting compounds, the composition and utilization of potato peel, nutritional significance of potato products, and potato probiotics. Given its scope, the book will be of interest to undergraduate students, graduate students and researchers in plant physiology and biochemistry, plant genetic engineering, the food sciences and agriculture, as well as industry partners in related fields.
Given the profound moral-ethical controversies regarding the use of new biotechnologies in medical research and treatment, such as embryonic research and cloning, this book sheds new light on the role of religious organizations and actors in influencing the bio-political debates and decision-making processes. Further, it analyzes the ways in which religious traditions and actors formulate their bio-ethical positions and which rationales they use to validate their positions. The book offers a range of case studies on fourteen Western democracies, highlighting the bio-ethical and political debates over human stem cell research, therapeutic and reproductive cloning, and pre-implantation genetic diagnosis. The contributing authors illustrate the ways in which national political landscapes and actors from diverse and often fragmented moral communities with widely varying moral stances, premises and commitments formulate their bio-ethical positions and seek to influence political decisions. |
You may like...
Advancements in Bio-Medical Image…
Rijwan Khan, Indrajeet Kumar
Hardcover
R8,408
Discovery Miles 84 080
Biomaterial-supported Tissue…
Mike Barbeck, Ole Jung, …
Hardcover
Bioprospecting of Enzymes in Industry…
Hrudayanath Thatoi, Sonali Mohapatra, …
Hardcover
R4,535
Discovery Miles 45 350
Current and Future Aspects of…
Islam Ahmed Hamed Khalil
Hardcover
Modern Applications in Membrane Science…
Isabel Escobar, Bart Van der Bruggen
Hardcover
R5,419
Discovery Miles 54 190
Fibroblasts - Advances in Inflammation…
Mojca Frank Bertoncelj, Katja Lakota
Hardcover
|