![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Nursing & ancillary services > Biomedical engineering > General
Are we satisfied with the rate of drug development? Are we happy with the drugs that come to market? Are we getting our money's worth in spending for basic biomedical research? In Translational Systems Biology, Drs. Yoram Vodovotz and Gary An address these questions by providing a foundational description the barriers facing biomedical research today and the immediate future, and how these barriers could be overcome through the adoption of a robust and scalable approach that will form the underpinning of biomedical research for the future. By using a combination of essays providing the intellectual basis of the Translational Dilemma and reports of examples in the study of inflammation, the content of Translational Systems Biology will remain relevant as technology and knowledge advances bring broad translational applicability to other diseases. Translational systems biology is an integrated, multi-scale, evidence-based approach that combines laboratory, clinical and computational methods with an explicit goal of developing effective means of control of biological processes for improving human health and rapid clinical application. This comprehensive approach to date has been utilized for in silico studies of sepsis, trauma, hemorrhage, and traumatic brain injury, acute liver failure, wound healing, and inflammation.
This book presents current innovative, alternative and creative approaches that challenge traditional mechanisms in and across disciplines and industries targeting societal impact. A common thread throughout the book is human-centered, uni and multi-modal strategies across the range of human technologies, including sensing and stimuli; virtual and augmented worlds; games for serious applications; accessibility; digital-ethics and more. Focusing on engaging, meaningful, and motivating activities that at the same time offer systemic information on human condition, performance and progress, the book is of interest to anyone seeking to gain insights into the field, be they students, teachers, practicing professionals, consultants, or family representatives. By offering a wider perspective, it addresses the need for a core text that evokes and provokes, engages and demands and stimulates and satisfies.
The use of bioresorbable polymers in stents, fixation devices and tissue engineering is revolutionising medicine. Both industry and academic researchers are interested in using computer modelling to replace some experiments which are costly and time consuming. This book provides readers with a comprehensive review of modelling polymers and polymeric medical devices as an alternative to practical experiments. Chapters in part one provide readers with an overview of the fundamentals of biodegradation. Part two looks at a wide range of degradation theories for bioresorbable polymers and devices. The final set of chapters look at advances in modelling biodegradation of bioresorbable polymers. This book is an essential guide to those concerned with replacing tests and experiments with modelling.
Surface modification of magnesium and its alloys for biomedical applications: Biological interactions, mechanical properties and testing, the first of two volumes, is an essential guide on the use of magnesium as a degradable implant material. Due to their excellent biocompatibility and biodegradability, magnesium based degradable implants provide a viable option for the permanent metallic implants. This volume focuses on the fundamental concepts of surface modification of magnesium, its biological interactions, mechanical properties and, in vitro and in vivo testing. The contents of volume 1 is organized and presented in three parts. Part 1 reviews the fundamental aspects of surface modification of magnesium, including surface design, opportunities, challenges and its role in revolutionizing biodegradable biomaterials. Part 2 addresses the biological and mechanical properties covering an in vivo approach to the bioabsorbable behavior of magnesium alloys, mechanical integrity and, the effects of amino acids and proteins on the performance of surface modified magnesium. Part 3 delves in to testing and characterization, exploring the biocompatibility and effects on fatigue life alongside the primary characteristics of surface modified magnesium. All chapters are written by experts, this two volume series provides systematic and thorough coverage of all major modification technologies and coating types of magnesium and its alloys for biomedical applications.
This authored monograph supplies empirical evidence for the Bayesian brain hypothesis by modeling event-related potentials (ERP) of the human electroencephalogram (EEG) during successive trials in cognitive tasks. The employed observer models are useful to compute probability distributions over observable events and hidden states, depending on which are present in the respective tasks. Bayesian model selection is then used to choose the model which best explains the ERP amplitude fluctuations. Thus, this book constitutes a decisive step towards a better understanding of the neural coding and computing of probabilities following Bayesian rules. The target audience primarily comprises research experts in the field of computational neurosciences, but the book may also be beneficial for graduate students who want to specialize in this field.
Research and developments in neuroprostheses are providing scientists with the potential to greatly improve the lives of individuals who have lost some function. Neuroprostheses can help restore or substitute motor and sensory functions which may have been damaged as a result of injury or disease. However, these minute implantable sensors also provide scientists with challenges. This important new book provides readers with a comprehensive review of neuroprostheses. Chapters in part one are concerned with the fundamentals of these devices. Part two looks at neuroprostheses for restoring sensory function whilst part three addresses neuroprostheses for restoring motor function. The final set of chapters discusses significant considerations concerning these sensors.
Integrating basic to applied science and technology in medicine, pharmaceutics, molecular biology, biomedical engineering, biophysics and irreversible thermodynamics, this book covers cutting-edge research of the structure and function of biomaterials at a molecular level. In addition, it examines for the first time studies performed at the nano- and micro scale. With innovative technologies and methodologies aiming to clarify the molecular mechanism and macroscopic relationship, Nano/Micro Science and Technology in Biorheology thoroughly covers the basic principles of these studies, with helpful step-by-step explanations of methodologies and insight into medical applications. Written by pioneering researchers, the book is a valuable resource for academics and industry scientists, as well as graduate students, working or studying in bio-related fields.
Surface modification of biomaterials can ultimately determine whether a material is accepted or rejected from the human body, and a responsive surface can further make the material "smart" and "intelligent". Switchable and Responsive Surfaces and Materials for Biomedical Applications outlines synthetic and biological materials that are responsive under different stimuli, their surface design and modification techniques, and applicability in regenerative medicine/tissue engineering, drug delivery, medical devices, and biomedical diagnostics. Part one provides a detailed overview of switchable and responsive materials and surfaces, exploring thermo-responsive polymers, environmentally responsive polyelectrolytes and zwitterionic polymers, as well as peptide-based and photonic sensitive switchable materials. Further chapters include a detailed overview of the preparation and analysis of switchable polymer brushes and copolymers for biomedical application. Part two explores the biological interactions and biomedical applications of switchable surfaces, where expert analysis is provided on the interaction of switchable surfaces with proteins and cells. The interaction of stimuli-sensitive polymers for tissue engineering and drug delivery with biosurfaces is critiqued, whilst the editor provides a skillful study into the application of responsive polymers in implantable medical devices and biosensors.
Joint endoprosthetics - the science of implanting artificial joints
into the human body - has been around since the 1960 s, and
consistent advancements are leading to better practice, materials
and mechanics.
The Case Studies in Medical Devices Design series consists of practical, applied case studies relating to medical device design in industry. These titles complement Ogrodnik's Medical Device Design and will assist engineers with applying the theory in practice. The case studies presented directly relate to Class I, Class IIa, Class IIb and Class III medical devices. Designers and companies who wish to extend their knowledge in a specific discipline related to their respective class of operation will find any or all of these titles a great addition to their library. Class 1 Devices is a companion text to Medical Devices Design: Innovation from Concept to Market. The intention of this book, and its sister books in the series, is to support the concepts presented in Medical Devices Design through case studies. In the context of this book the case studies consider Class I (EU) and 510(k) exempt (FDA) . This book covers classifications, the conceptual and embodiment phase, plus design from idea to PDS.
This volume presents the current state of laser-assisted bioprinting, a cutting edge tissue engineering technology. Nineteen chapters discuss the most recent developments in using this technology for engineering different types of tissue. Beginning with an overview, the discussion covers bioprinting in cell viability and pattern viability, tissue microfabrication to study cell proliferation, microenvironment for controlling stem cell fate, cell differentiation, zigzag cellular tubes, cartilage tissue engineering, osteogenesis, vessel substitutes, skin tissue and much more. Because bioprinting is on its way to becoming a dominant technology in tissue-engineering, Bioprinting in Regenerative Medicine is essential reading for those researching or working in regenerative medicine, tissue engineering or translational research. Those studying or working with stem cells who are interested in the development of the field will also find the information invaluable.
This book provides the latest information about hairy root culture and its several applications, with special emphasis on potential of hairy roots for the production of bioactive compounds. Due to high growth rate as well as biochemical and genetic stability, it is possible to study the metabolic pathways related to production of bioactive compounds using hairy root culture. Chapters discuss the feasibility of hairy roots for plant derived natural compounds. Advantages and difficulties of hairy roots for up-scaling studies in bioreactors are included as well as successful examples of hairy root culture of plant species producing bioactive compounds used in food, flavors and pharmaceutical industry. This book is a valuable resource for researchers and students working on the area of plant natural products, phytochemistry, plant tissue culture, medicines, and drug discovery.
This book addresses the background and significance of the factors potentially influencing the clinical and biological outcomes of metal-on-metal hip implants.Metal-on-metal bearings were introduced and evaluated as an alternative to other bearing couples, particularly metal-on-polyethylene, due to their enhanced wear resistance as determined in laboratory testing.Initially, reports of short-term clinical outcomes were favorable and an increasing number of metal-on-metal prostheses were implanted. Subsequently, isolated case findings describing adverse tissue responses around the articulation became the harbinger of an increasing number of reports describing pseudotumors and other significant lymphocytic-based responses associated with metal-on-metal prostheses. Questions have been raised as to whether this is an implant, design, or patient-specific response. The reasons why some patients have a negative biological response and pathology while others do not remain to be determined, but tens of thousands of patients in the US, the UK, and around the world are considered to be at risk. Leading researchers and clinicians describe the issues related to the nature of the biological and pathological responses and the protocols that should be followed to determine if an adverse response is occurring. This book is essential reading for researchers, engineers, and orthopaedic surgeons who are involved in the design, evaluation, and implantation of metal-on-metal prostheses."
The new edition will discuss recent advances in computer modeling, including how fields generated outside the body are distributed inside and how various frequencies may interact differently with natural biological or biochemical cycles. It covers the basic biological, medical, physical, and electrical engineering principles and experimental results concerning how electric and magnetic fields affect biological systems-both as potential hazards to health and as potential tools for medical treatment and scientific research. It also briefly includes material on the relationship between the science and the regulatory processes concerning human exposure to the fields.
This book investigates the design of devices, systems, and circuits for medical applications using the two recently established frequency bands: ultra-wideband (3.1-10.6 GHz) and 60 GHz ISM band. These two bands provide the largest bandwidths available for communication technologies and present many attractive opportunities for medical applications. The applications of these bands in healthcare are wireless body area network (WBAN), medical imaging, biomedical sensing, wearable and implantable devices, fast medical device connectivity, video data transmission, and vital signs monitoring. The recent technological advances and developments proposed or used in medicine based on these two bands are covered. The book introduces possible solutions and design techniques to efficiently implement these systems in medical environment. All individual chapters are written by leading experts in their fields. Contributions by authors are on various applications of ultra-wideband and the 60 GHz ISM band including circuit implementation, UWB and 60 GHz signal transmission around and in- body, antenna design solution, hardware implementation of body sensors, UWB transceiver design, 60 GHz transceiver design, UWB radar for contactless respiratory monitoring, and ultra-wideband based medical Imaging. The book will be a key resource for medical professionals, bio-medical engineers, and graduate and senior undergraduate students in computer, electrical, electronic and biomedical engineering disciplines.
Total hip arthroplasty, the most commonly performed orthopedic procedure, is used to replace or reconstruct the hip with an artificial joint. "Perspectives in Total Hip Arthroplasty" outlines developments in technologies and biomaterials used for this procedure, with a focus on the tribological interactions of the materials used. Part one outlines the history of total hip arthroplasty and goes on to explore advances in techniques and biomaterials. Part two focuses on the tribology of materials used to perform this procedure, explaining the impact of wear on the load-bearing surface, a major cause of failure in hip prostheses. Chapters review a range of materials, including modern biomaterials, hybrid materials, metal, ceramic, and polyethylene. The book also discusses the tribological interactions of these materials when used in total hip arthroplasty. "Perspectives in Total Hip Arthroplasty "is a key resource for
clinicians, researchers, and academics interested in the tribology
of total hip arthroplasty, as well as materials researchers,
engineers, and academics concerned with the tribology of
biomaterials.
This book provides comprehensive mechanobiological insights into bone, including the microstructure of cancellous bone and its realistic loading in the human body. This approach considers different types of loads, i.e. static and dynamic, and the response under uniaxial and multiaxial loading conditions. The book also reviews additional factors influencing biomechanical properties, e.g. fluid transport. In closing, the mechanobiological approach is discussed in the context of the finite element method.
This book presents the latest advances in marine structures and related biomaterials for applications in both soft- and hard-tissue engineering, as well as controlled drug delivery. It explores marine structures consisting of materials with a wide variety of characteristics that warrant their use as biomaterials. It also underlines the importance of exploiting natural marine resources for the sustainable development of novel biomaterials and discusses the resulting environmental and economic benefits. The book is divided into three major sections: the first covers the clinical application of marine biomaterials for drug delivery in tissue engineering, while the other two examine the clinical significance of marine structures in soft- and hard-tissue engineering, respectively. Focusing on clinically oriented applications, it is a valuable resource for dentists, oral and maxillofacial surgeons, orthopedic surgeons, and students and researchers in the field of tissue engineering.
This thesis mainly focuses on the design and synthesis of novel multifunctional nanoprobes, investigating their feasibility for applications involving sensing, molecular imaging, and the simultaneous diagnosis and therapy of cancer. Above all, it discusses the development of innovative nanomaterials to address the issues limiting the effectiveness of currently available nanoprobes such as the synthesis shortcoming and poor performance in sensing, imaging and therapeutic applications. One of the strengths of this thesis is its integration of knowledge from chemistry, materials science and biomedicine. Further, it presents the theoretical fundamentals in the design of nanoprobes, which can offer guidance for future studies on the development of novel multifunctional nanomaterials with significantly enhanced performance.
The goal of this book is to provide, in a friendly and refreshing manner, both theoretical concepts and practical techniques for the important and exciting field of Artificial Intelligence that can be directly applied to real-world healthcare problems. Healthcare - the final frontier. Lately, it seems like Pandora opened the box and evil was released into the world. Fortunately, there was one thing left in the box: hope. In recent decades, hope has been increasingly represented by Intelligent Decision Support Systems. Their continuing mission: to explore strange new diseases, to seek out new treatments and drugs, and to intelligently manage healthcare resources and patients. Hence, this book is designed for all those who wish to learn how to explore, analyze and find new solutions for the most challenging domain of all time: healthcare. |
You may like...
Design of Nanostructures for Versatile…
Alexandru Mihai Grumezescu
Paperback
Handbook of Electronic Assistive…
Ladan Najafi, Donna Cowan
Paperback
Biomarkers in Cancer Detection and…
Ranbir Chander Sobti, Masatoshi Watanabe, …
Paperback
R3,268
Discovery Miles 32 680
Surface Modification of Magnesium and…
T S N Sankara Narayanan, Il-Song Park, …
Hardcover
R4,394
Discovery Miles 43 940
Targeting Chronic Inflammatory Lung…
Kamal Dua, Philip M. Hansbro, …
Paperback
R4,033
Discovery Miles 40 330
Anaerobiosis and Stemness - An…
Zoran Ivanovic, Marija Vlaski
Hardcover
R2,274
Discovery Miles 22 740
Definitions of Biomaterials for the…
Xingdong Zhang, David Williams
Paperback
R2,164
Discovery Miles 21 640
|