![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Nursing & ancillary services > Biomedical engineering > General
Artificial Intelligence to Solve Pervasive Internet of Things Issues discusses standards and technologies and wide-ranging technology areas and their applications and challenges, including discussions on architectures, frameworks, applications, best practices, methods and techniques required for integrating AI to resolve IoT issues. Chapters also provide step-by-step measures, practices and solutions to tackle vital decision-making and practical issues affecting IoT technology, including autonomous devices and computerized systems. Such issues range from adopting, mitigating, maintaining, modernizing and protecting AI and IoT infrastructure components such as scalability, sustainability, latency, system decentralization and maintainability. The book enables readers to explore, discover and implement new solutions for integrating AI to solve IoT issues. Resolving these issues will help readers address many real-world applications in areas such as scientific research, healthcare, defense, aeronautics, engineering, social media, and many others.
Mathematical and numerical modelling of engineering problems in medicine is aimed at unveiling and understanding multidisciplinary interactions and processes and providing insights useful to clinical care and technology advances for better medical equipment and systems. When modelling medical problems, the engineer is confronted with multidisciplinary problems of electromagnetism, heat and mass transfer, and structural mechanics with, possibly, different time and space scales, which may raise concerns in formulating consistent, solvable mathematical models. Computational Medical Engineering presents a number of engineering for medicine problems that may be encountered in medical physics, procedures, diagnosis and monitoring techniques, including electrical activity of the heart, hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods. The authors discuss the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling (e.g., criteria for well-posed problems); physics scaling (homogenization techniques); Constructal Law criteria in morphing shape and structure of systems with internal flows; computational domain construction (CAD and, or reconstruction techniques based on medical images); numerical modelling issues, and validation techniques used to ascertain numerical simulation results. In addition, new ideas and venues to investigate and understand finer scale models and merge them into continuous media medical physics are provided as case studies.
ODE/PDE Analysis of Antibiotic/Antimicrobial Resistance: Programming in R presents mathematical models for antibiotic/antimicrobial resistance based on ordinary and partial differential equations (ODE/PDEs). Sections cover the basic ODE model, the detailed PDE model that gives the spatiotemporal distribution of four dependent variable components, including susceptible bacteria population density, resistant bacteria population density, plasmid number, and antibiotic concentration. The computer-based implementation of the example models is presented through routines coded (programmed) in R, a quality, open-source scientific computing system that is readily available from the Internet. As such, formal mathematics is minimized and no theorems and proofs are required. The PDE analysis is based on the method of lines (MOL), an established general algorithm for PDEs that is implemented with finite differences. Routines are available from a download link so that the example models can be executed without having to first study numerical methods and computer coding. Routines can then be applied to variations and extensions of the antibiotic/antimicrobial models, such as changes in the ODE/PDE parameters (constants) and the form of the model equations.
Digital Health: Mobile and Wearable Devices for Participatory Health Applications is a key reference for engineering and clinical professionals considering the development or implementation of mobile and wearable solutions in the healthcare domain. The book presents a comprehensive overview of devices and appropriateness for the respective applications. It also explores the ethical, privacy, and cybersecurity aspects inherent in networked and mobile technologies. It offers expert perspectives on various approaches to the implementation and integration of these devices and applications across all areas of healthcare. The book is designed with a multidisciplinary audience in mind; from software developers and biomedical engineers who are designing these devices to clinical professionals working with patients and engineers on device testing, human factors design, and user engagement/compliance.
Active and Assisted Living (AAL) systems aim at improving the quality of life and supporting independent and healthy living of older or impaired people by using a distributed network of sensors and actuators to create a ubiquitous technological layer, able to interact transparently with the users, observing and interpreting their actions and intentions, learning their preferences and adjusting the parameters of the system to improve their quality of life and work. This book provides a comprehensive review of the technologies and applications for AAL. Topics covered include the current state of the art of smart environments and labs from an AAL point of view; ambient and wearable sensors for human health monitoring; computer vision for active and assisted living; data fusion for identifying lifestyle patterns; interoperable enhanced living environments; reasoning systems for AAL; person-environment interaction; data analytics for enabling connected health; human gait analysis for frailty detection; fall prevention and detection; supporting activities of daily living; outdoor mobility assistance; location and orientation technologies based on WiFi systems; health, wellbeing and engagement in life through AAL; tablet-based clinical decision support system for hospitalised older adults; smart, age-friendly cities and communities; privacy and ethical issues; and human-centred design. The book concludes with a case study on the design and implementation of a smart home technological platform for the delivery of AAL services. With a wide range of chapters from international contributors, this book is essential reading for researchers and students in academics and industry developing AAL technologies, healthcare practitioners, and engineers with an interest in the field.
Nanotechnology for Oral Drug Delivery: From Concept to Applications discusses the current challenges of oral drug delivery, broadly revising the different physicochemical barriers faced by nanotechnolgy-based oral drug delivery systems, and highlighting the challenges of improving intestinal permeability and drug absorption. Oral delivery is the most widely used form of drug administration due to ease of ingestion, cost effectiveness, and versatility, by allowing for the accommodation of different types of drugs, having the highest patient compliance. In this book, a comprehensive overview of the most promising and up-to-date engineered and surface functionalized drug carrier systems, as well as opportunities for the development of novel and robust delivery platforms for oral drug administration are discussed. The relevance of controlling the physicochemical properties of the developed particle formulations, from size and shape to drug release profile are broadly reviewed. Advances in both in vitro and in vivo scenarios are discussed, focusing on the possibilities to study the biological-material interface. The industrial perspective on the production of nanotechnology-based oral drug delivery systems is also covered. Nanotechnology for Oral Drug Delivery: From Concept to Applications is essential reading for researchers, professors, advanced students and industry professionals working in the development, manufacturing and/or commercialization of nanotechnology-based systems for oral drug delivery, targeted drug delivery, controlled drug release, materials science and biomaterials, in vitro and in vivo testing of potential oral drug delivery technologies.
Biomaterials for 3D Tumor Modeling reviews the fundamentals and most relevant areas of the latest advances of research of 3D cancer models, focusing on biomaterials science, tissue engineering, drug delivery and screening aspects. The book reviews advanced fundamental topics, including the causes of cancer, existing cancer models, angiogenesis and inflammation during cancer progression, and metastasis in 3D biomaterials. Then, the most relevant biomaterials are reviewed, including methods for engineering and fabrication of biomaterials. 3D models for key biological systems and types of cancer are also discussed, including lung, liver, oral, prostate, pancreatic, ovarian, bone and pediatric cancer. This book is suitable for those working in the disciplines of materials science, biochemistry, genetics, molecular biology, drug delivery and regenerative medicine.
Storing Digital Binary Data into Cellular DNA demonstrates how current digital information storage systems have short longevity and limited capacity, also pointing out that their production and consumption of data exceeds supply. Author Rocky Termanini explains the DNA system and how it encodes vast amounts of data, then presents information on the emergence of DNA as a storage technology for the ever-growing stream of data being produced and consumed. The book will be of interest to a range of readers looking to understand this game-changing technology, including researchers in computer science, biomedical engineers, geneticists, physicians, clinicians, law enforcement and cybersecurity experts.
Wearable Bioelectronics presents the latest on physical and (bio)chemical sensing for wearable electronics. It covers the miniaturization of bioelectrodes and high-throughput biosensing platforms while also presenting a systemic approach for the development of electrochemical biosensors and bioelectronics for biomedical applications. The book addresses the fundamentals, materials, processes and devices for wearable bioelectronics, showcasing key applications, including device fabrication, manufacturing, and healthcare applications. Topics covered include self-powering wearable bioelectronics, electrochemical transducers, textile-based biosensors, epidermal electronics and other exciting applications.
Molecular Biomarkers in Cancer Detection and Monitoring of Therapeutics, Volume One, Discovery and Technologies discusses how molecular biomarkers are used to determine predisposition, facilitate detection, improve treatment and offer prevention guidelines for different cancer types. This first volume in the series focuses on techniques and approaches recently developed to assist in the decision of which biomarker to use for specific conditions. Topics covered include circulating tumor cells and circulating tumor DNA, exomes, tumor microenvironment, gene editing, artificial intelligence and robotics. In addition, the book discusses the development and applications of organoids and precision medicine. This book will be a valuable resource for cancer researchers, oncologists, graduate students and members of the biomedical field who are interested in the potential of biomarkers in cancer research.
Rapid Prototyping of Biomaterials: Techniques in Additive Manufacturing, Second Edition, provides a comprehensive review of emerging rapid prototyping technologies, such as bioprinting, for biomedical applications. Rapid prototyping, also known as additive manufacturing, solid freeform fabrication, or 3D printing, can be used to create complex structures and devices for medical applications from solid, powder or liquid precursors. Sections explore a variety of materials, look at applications, and consider the use of rapid prototyping technologies for constructing organs. With its distinguished editor and international team of renowned contributors, this book is a useful, technical resource for scientists and researchers in academia, biomaterials and tissue regeneration.
Nanostructured Biomaterials for Regenerative Medicine focuses on the definition of new trends for the design of biomaterials for biomedical applications. It includes the ex novo synthesis as well as technological strategies to manipulate them into appropriate two-dimensional (2D) and three-dimensional (3D) forms, in order to impart all the main physical, chemical, structural and biological properties requested to achieve desired clinical efficacy. This book aims at offering a concise overview of innovative platforms based on nanostructured biomaterials as a function of their chemical nature - established by a consolidated material classification i.e., polymer, ceramics and metals. For each class, emerging bioinspired systems with rapid expansion in the biomedical research area and fabricated via new enabling technologies will be proposed for the use in tissue repair/regeneration and nanomedicine. This book is an essential resource for researchers, academics and professionals interested in the potential of nanostructured biomaterials for regenerative medicine.
The Handbook of Natural Fibres, Second Edition, Volume One: Types, Properties and Factors Affecting Breeding and Cultivation covers every aspect of natural fibers, their breeding, cultivation, processing and applications. This volume features fundamental discussions of each fiber, covering different stages of breeding and cultivation. Natural fibrous resources, both lignocellulosic and protein ones, are renewable, biodegradable, and nontoxic, making them an important source of sustainable textile solutions. A broad range of natural fibers are covered in this book, including cotton, jute, kenaf, flax, hemp, sisal, ramie, curaua, pineapple, bamboo, coir, sheep wool, and more.
Clinical Engineering: A Handbook for Clinical and Biomedical Engineers, Second Edition, helps professionals and students in clinical engineering successfully deploy medical technologies. The book provides a broad reference to the core elements of the subject, drawing from a range of experienced authors. In addition to engineering skills, clinical engineers must be able to work with both patients and a range of professional staff, including technicians, clinicians and equipment manufacturers. This book will not only help users keep up-to-date on the fast-moving scientific and medical research in the field, but also help them develop laboratory, design, workshop and management skills. The updated edition features the latest fundamentals of medical technology integration, patient safety, risk assessment and assistive technology.
Principles of Heart Valve Engineering is the first comprehensive resource for heart valve engineering that covers a wide range of topics, including biology, epidemiology, imaging and cardiovascular medicine. It focuses on valves, therapies, and how to develop safer and more durable artificial valves. The book is suitable for an interdisciplinary audience, with contributions from bioengineers and cardiologists that includes coverage of valvular and potential future developments. This book provides an opportunity for bioengineers to study all topics relating to heart valve engineering in a single book as written by subject matter experts.
Handbook of Research on Blockchain Technology presents the latest information on the adaptation and implementation of Blockchain technologies in real world business, scientific, healthcare and biomedical applications. The book's editors present the rapid advancements in existing business models by applying Blockchain techniques. Novel architectural solutions in the deployment of Blockchain comprise the core aspects of this book. Several use cases with IoT, biomedical engineering, and smart cities are also incorporated. As Blockchain is a relatively new technology that exploits decentralized networks and is used in many sectors for reliable, cost-effective and rapid business transactions, this book is a welcomed addition on existing knowledge. Financial services, retail, insurance, logistics, supply chain, public sectors and biomedical industries are now investing in Blockchain research and technologies for their business growth. Blockchain prevents double spending in financial transactions without the need of a trusted authority or central server. It is a decentralized ledger platform that facilitates verifiable transactions between parties in a secure and smart way.
Biomedical Information Technology, Second Edition, contains practical, integrated clinical applications for disease detection, diagnosis, surgery, therapy and biomedical knowledge discovery, including the latest advances in the field, such as biomedical sensors, machine intelligence, artificial intelligence, deep learning in medical imaging, neural networks, natural language processing, large-scale histopathological image analysis, virtual, augmented and mixed reality, neural interfaces, and data analytics and behavioral informatics in modern medicine. The enormous growth in the field of biotechnology necessitates the utilization of information technology for the management, flow and organization of data. All biomedical professionals can benefit from a greater understanding of how data can be efficiently managed and utilized through data compression, modeling, processing, registration, visualization, communication and large-scale biological computing.
Innovations and Emerging Technologies in Wound Care is a pivotal book on the prevention and management of chronic and non-healing wounds. The book clearly presents the research and evidence that should be considered when planning care interventions to improve health related outcomes for patients. New and emerging technologies are discussed and identified, along with tactics on how they can be integrated into clinical practice. This book offers readers a bridge between biomedical engineering and medicine, with an emphasis on technological innovations. It includes contributions from engineers, scientists, clinicians and industry professionals. Users will find this resource to be a complete picture of the latest knowledge on the tolerance of human tissues to sustained mechanical and thermal loads that also provides a deeper understanding of the risk for onset and development of chronic wounds.
Natural Biopolymers in Drug Delivery and Tissue Engineering systematically examines a broad range of natural polymers and their applications in drug delivery and tissue engineering. The book thoroughly collates the most relevant and up-to-date research on natural biopolymers, covering a variety of key natural polymer types such as chitin, chitosan, alginate, guar gum and collagen. It is divided into two sections, covering drug delivery and tissue engineering applications. Each section focuses on natural biopolymers in the form of scaffolds, membranes, films, gels and nanoparticles, thus helping the reader select not only the most appropriate polymer type, but also the most relevant structure. This comprehensive resource is ideal for materials scientists, biomedical engineers, tissue engineers, pharmaceutical scientists and anyone interested in developing novel materials for biomedical applications.
Handbook of Robotic and Image-Guided Surgery provides state-of-the-art systems and methods for robotic and computer-assisted surgeries. In this masterpiece, contributions of 169 researchers from 19 countries have been gathered to provide 38 chapters. This handbook is 744 pages, includes 659 figures and 61 videos. It also provides basic medical knowledge for engineers and basic engineering principles for surgeons. A key strength of this text is the fusion of engineering, radiology, and surgical principles into one book.
Materials for Biomedical Engineering: Absorbable Polymers provides a detailed and comprehensive review of recent progress in absorbable biopolymers and their impact on biomedical engineering. The book's main focus lies in their classification, processing, properties and performance, biocompatibility, and their applications in tissue engineering, drug delivery, bone repair and regenerative medicine. The most up-to-date methods used to obtain such polymers and how to improve their properties is discussed in detail. This book provides readers with a comprehensive and updated review of the latest research in the field of absorbable polymers for biomedical applications.
Our increased understanding of health and disease coupled with major technologic advances has resulted in rapid and significant changes in the practice of medicine. How we prepare physicians for clinical practice 20, 30, or 40 years from now is of paramount importance to medical educators, to the future professionals, and to society at large. Implementing Biomedical Innovations into Health, Education, and Practice delves into this important question, discussing the effects of precision medicine, bioinformatics, biologic and environmental forces, and societal shifts on the physician's approach to diagnosis and therapy. The author interviewed world-renowned physicians, medical educators, healthcare leaders, and research professionals-their insights and quotes are woven throughout the narrative. Professionally illustrated, this relevant resource is a must-have for all medical professionals who incorporate technology and biomedical innovations in their research and clinical practice. It encourages thoughtful analysis on adapting and developing the foundational knowledge, skills, and aptitudes of future physicians and other healthcare professionals, and it belongs in your library. "Having completed deanship at one of America's leading medical schools, Jim Woolliscroft produces an insightful, contemplative projection of the likely skill and behavioral needs of the physician workforce for the mid-21st century...The result is a playbook for physician training that responds effectively to the daunting challenges faced in the coming transformation of the role of physicians in protecting the health of our nation." James L. Madara, MD, CEO, American Medical Association "Dr. Woolliscroft's provocative new book will become must reading for all who are serious about educating the next generation of physicians and health care leaders. Leveraging his own experience as a consummate educator and interviews with numerous thought leaders, he identifies the uncertainties, challenges and disruptions to the practice of medicine in the decades ahead. The implications and imperatives for the coming generations of physicians are compelling and of critical importance for care givers, policy makers, and most pointedly educators in the U.S. and around the world." Gary S. Kaplan MD, Chairman and CEO, Virginia Mason Health System "This ambitious masterpiece, by one of the leading medical educators of our time, fully captures the ongoing changes and disruptions in medicine today, and how they will influence the care of patients and the training of young physicians in the future." Eric Topol, MD, Executive Vice President, Scripps Research, Author of Deep Medicine
Functional Polysaccharides for Biomedical Applications examines the fundamentals and properties of these natural materials and their potential biomedical applications. With an emphasis on therapeutic and sensing applications, the book also reviews how polysaccharides can be modified for tissue engineering applications. Sections discuss the basics of polysaccharides, give an overview of the potential applications, look at novel materials and technologies for use in tissue regeneration and therapeutics, and detail current biomedical applications. With a strong focus on materials, engineering and applications, this book is a valuable resource for those with an interest in harnessing the biomedical potential of natural polymers.
Biomaterials for Skin Repair and Regeneration examines a range of materials and technologies used for regenerating or repairing skin. With a strong focus on biomaterials and scaffolds, the book also examines the testing and evaluation pathway for human clinical trials. Beginning by introducing the fundamentals on skin tissue, the book goes on to describe contemporary technology used in skin repair as well as currently available biomaterials suitable for skin tissue repair and regeneration. Skin tissue engineering and the ideal requirements to take into account when developing skin biomaterials are discussed, followed by information on the individual materials used for skin repair and regeneration. As evaluation of biomaterials in animal models is mandatory before proceeding into human clinical trials, the book also examines the different animal models available. With a strong focus on materials, engineering, and application, this book is a valuable resource for materials scientists, skin biologists, and bioengineers with an interest in tissue engineering, regeneration, and repair of skin.
Medical Device Design: Innovation from Concept to Market, Second Edition provides the bridge between engineering design and medical device development. There is no single text that addresses the plethora of design issues a medical devices designer meets when developing new products or improving older ones; this book fills that need. It addresses medical devices' regulatory (FDA and EU) requirements, shows the essential methodologies medical designers must understand to ensure their products meet requirements, and brings together proven design protocols, thus enabling engineers and medical device manufacturers to rapidly bring new products to the marketplace. This book is unique because it takes the reader through the process of medical device development, from very early stages of conceptualization, to commercialization on the global market. This rare resource can be used by both professionals and newcomers to device design. |
You may like...
Handbook of Electronic Assistive…
Ladan Najafi, Donna Cowan
Paperback
Definitions of Biomaterials for the…
Xingdong Zhang, David Williams
Paperback
R2,164
Discovery Miles 21 640
Biomaterials and Regenerative Medicine…
T V Chirila, Damien Harkin
Hardcover
Intelligent Data Sensing and Processing…
Miguel Antonio Wister Ovando, Pablo Pancardo Garcia, …
Paperback
Electrofluidodynamic Technologies…
Vincenzo Guarino, Luigi Ambrosio
Hardcover
R5,304
Discovery Miles 53 040
Drug Delivery Nanosystems for Biomedical…
Chandra P Sharma
Hardcover
Targeting Chronic Inflammatory Lung…
Kamal Dua, Philip M. Hansbro, …
Paperback
R4,033
Discovery Miles 40 330
|