![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Nursing & ancillary services > Biomedical engineering > General
Artificial Intelligence and Machine Learning for Predictive and Analytical Rendering in Edge Computing focuses on the role of AI and machine learning as it impacts and works alongside Edge Computing. Sections cover the growing number of devices and applications in diversified domains of industry, including gaming, speech recognition, medical diagnostics, robotics and computer vision and how they are being driven by Big Data, Artificial Intelligence, Machine Learning and distributed computing, may it be Cloud Computing or the evolving Fog and Edge Computing paradigms. Challenges covered include remote storage and computing, bandwidth overload due to transportation of data from End nodes to Cloud leading in latency issues, security issues in transporting sensitive medical and financial information across larger gaps in points of data generation and computing, as well as design features of Edge nodes to store and run AI/ML algorithms for effective rendering.
Contemporary approaches to the synthesis of chemically modified biomacromolecules (proteins, nucleic acids, lipids, and carbohydrates) not only require efficient means to control conjugation and the specific site of attachment of the conjugated moiety but also the effective use of recent developments in the fields of pharmaceutical chemistry, biomolecular/polymer engineering, and nanobiotechnology. In this second edition of "Bioconjugation Protocols: Strategies and Methods," expert researchers update the classic methods and introduce valuable new approaches that go beyond basic conjugation techniques to include elements from advanced organic synthesis, molecular biology, surface biotechnology, materials science, and nanobioscience/engineering. These readily reproducible methods cover the preparation of biomolecular conjugates using a variety of labeling techniques and semisynthetic approaches. Additional chapters address the biofunctionalization of surface structures, including organic/inorganic thin films, as well as various types of nanostructures (magnetic nanoparticles, quantum dots, carbon nanotubes, and silicon nanowire devices). All the protocols follow the successful "Methods in Molecular Biology"TM series format, each one offering step-by-step laboratory instructions, an introduction outlining the principle behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and highly practical, "Bioconjugation Protocols: Strategies and Methods, Second Edition" offers both novice and experienced researchers access to the broad array of techniques needed to carry out the semisynthesis of functional biomolecular reagents and/or the biofunctionalization of surfaces and structures of unique interest for a wide variety of applications, ranging from novel biomedical diagnostics to powerful new therapeutics to advanced biomaterials."
How and why to write a movement? Who is the writer? Who is the reader? They may be choreographers working with dancers. They may be roboticists programming robots. They may be artists designing cartoons in computer animation. In all such fields the purpose is to express an intention about a dance, a specific motion or an action to perform, in terms of intelligible sequences of elementary movements, as a music score that would be devoted to motion representation. Unfortunately there is no universal language to write a motion. Motion languages live together in a Babel tower populated by biomechanists, dance notators, neuroscientists, computer scientists, choreographers, roboticists. Each community handles its own concepts and speaks its own language. The book accounts for this diversity. Its origin is a unique workshop held at LAAS-CNRS in Toulouse in 2014. Worldwide representatives of various communities met there. Their challenge was to reach a mutual understanding allowing a choreographer to access robotics concepts, or a computer scientist to understand the subtleties of dance notation. The liveliness of this multidisciplinary meeting is reflected by the book thank to the willingness of authors to share their own experiences with others.
Due to their unique size-dependent properties, nanomaterials have the potential to revolutionize the detection, diagnosis, and treatment of disease by offering superior capabilities compared to conventionally-used materials. Biomedical Nanotechnology: Methods and Protocols brings together experts from a wide variety of fields to provide a practical overview of biomedical nanotechnology, from the conception of novel materials in the laboratory to the application of such structures in the clinic. After a brief introductory chapter, the first section consists of protocol chapters which provide hands-on information on the synthesis of a variety of solution-phase and surface-bound nanomaterials and their application in sensing, imaging, and/or therapeutics, while the second section consists of a series of case studies and review chapters that discuss the toxicology of nanomaterials, the regulatory pathways to US Food and Drug Administration (FDA) approval of these materials, their patenting, marketing, and commercialization, and the legal and ethical issues surrounding their use. Written in the highly successful Methods in Molecular Biology (TM) series format, many chapters include introductions to their respective topics, lists of the necessary materials, step-by-step, readily reproducible protocols, and insightful tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Biomedical Nanotechnology: Methods and Protocols surveys this exciting field from the most vital angles in order to provide a comprehensive reference for scientists and researchers of all different backgrounds looking to utilize the numerous versatile applications of nanomaterial technologies.
This book contains the selected papers of the Sixth International Workshop on Medical and Service Robots (MESROB 2018), held in Cassino, Italy, in 2018. The main topics of the workshop include: design of medical devices, kinematics and dynamics for medical robotics, exoskeletons and prostheses, anthropomorphic hands , therapeutic robots and rehabilitation, cognitive robots, humanoid and service robots, assistive robots and elderly assistance, surgical robots, human-robot interfaces, haptic devices, and medical treatments.
Methods of Mathematical Modeling: Infectious Diseases presents computational methods related to biological systems and their numerical treatment via mathematical tools and techniques. Edited by renowned experts in the field, Dr. Hari Mohan Srivastava, Dr. Dumitru Baleanu, and Dr. Harendra Singh, the book examines advanced numerical methods to provide global solutions for biological models. These results are important for medical professionals, biomedical engineers, mathematicians, scientists and researchers working on biological models with real-life applications. The authors deal with methods as well as applications, including stability analysis of biological models, bifurcation scenarios, chaotic dynamics, and non-linear differential equations arising in biology. The book focuses primarily on infectious disease modeling and computational modeling of other real-world medical issues, including COVID-19, smoking, cancer and diabetes. The book provides the solution of these models so as to provide actual remedies.
This book presents an innovative concept for the realization of sensors based on a planar metamaterial microwave array and shows their application in biomedical analysis and treatment. The sensors are able to transduce the dielectric properties of materials in their direct vicinity into an electric signal. The specific array organization permits a simultaneous analysis of several materials using a single readout signal or a relative characterization of one material where information about its spatial distribution can be extracted. Two applications of the designed sensors are described here: the first is a cytological screening using micro fluidic technology, which shows that the sensors may be integrated into lab-on-chip technologies; the second application regards the use of the sensor in both the analysis and treatment of organic tissues. The developed sensor is able not only to screen the tissues for abnormalities, but also, by changing the applied signals, to perform thermal ablation and treat the abnormalities in a highly focused way. Thus, the research described in this book represents a considerable advancement in the field of biomedical microwave sensing.
Swamy Laxminarayan was an outstanding researcher active in many diverse fields of science and technology. This liber amicorum in memory of Swamy Laxminarayan collects Medical and Biological Engineering and Informatics contributions to the Safety and Security of Individuals and Society. The authors are renowned scientists and the aim of their writing is to recall the enormous personal and scientific achievement of Swamy Laxminarayan.
The objective of this book is to provide up-to-date coverage of some of the emerging developments in the field of integrated DNA biochips. It will prove a useful source of information for researchers in the field and for those who are just entering the field of biochip research.
The book presents a new, powerful model of neuronal networks, consisting of a three-dimensional neuronal culture in which 3D neuronal networks are coupled to micro-electrode-arrays (MEAs). It discusses the main advantages of the three-dimensional system compared to its two-dimensional counterpart, and shows that the network dynamics, recorded during both spontaneous and stimulated activity, differs between the two models, with the 3D system being better able to emulate the in vivo behaviour of neural networks. The book offers an extensive analysis of the system, from the theoretical background, to its design and applications in neuro-pharmacological studies. Moreover, it includes a concise yet comprehensive introduction to both 2D and 3D neuronal networks coupled to MEAs, and discusses the advantages, limitations and challenges of their applications as cellular and tissue-like in vitro experimental model systems.
This book provides a comprehensive overview of the cascade of events activated in the body following the implant of biomaterials and devices. It is one of the first books to shed light on the role of the host immune response on therapeutic efficacy, and reviews the state-of-the-art for both basic science and medical applications. The text examines advantages and disadvantages of the use of synthetic versus natural biomaterials. Particular emphasis is placed on the role of biomimicry in the development of smart strategies able to modulate infiltrating immune cells, thus reducing side effects (such as acute and chronic inflammation, fibrosis and/or implant rejection) and improving the therapeutic outcome (healing, tissue restoration). Current cutting-edge approaches in tissue engineering, regenerative medicine, and nanomedicine offer the latest insights into the role immunomodulation in improving tolerance during tissue transplant in the treatment of orthopaedic, pancreatic, and hepatic diseases. "Immune Response to Implanted Materials and Devices" is intended for an audience of graduate students and professional researchers in both academia and industry interested in the development of smart strategies, which are able to exploit the self-healing properties of the body and achieve functional tissue restoration.
Human Orthopaedic Biomechanics: Fundamentals, Devices and Applications covers a wide range of biomechanical topics and fields, ranging from theoretical issues, mechanobiology, design of implants, joint biomechanics, regulatory issues and practical applications. The book teaches the fundamentals of physiological loading and constraint conditions at various parts of the musculoskeletal system. It is an ideal resource for teaching and education in courses on orthopedic biomechanics, and for engineering students engaged in these courses. In addition, all bioengineers who have an interest in orthopedic biomechanics will find this title useful as a reference, particularly early career researchers and industry professionals. Finally, any orthopedic surgeons looking to deepen their knowledge of biomechanical aspects will benefit from the accessible writing style in this title.
The computational modelling of deformations has been actively studied for the last thirty years. This is mainly due to its large range of applications that include computer animation, medical imaging, shape estimation, face deformation as well as other parts of the human body, and object tracking. In addition, these advances have been supported by the evolution of computer processing capabilities, enabling realism in a more sophisticated way. This book encompasses relevant works of expert researchers in the field of deformation models and their applications. The book is divided into two main parts. The first part presents recent object deformation techniques from the point of view of computer graphics and computer animation. The second part of this book presents six works that study deformations from a computer vision point of view with a common characteristic: deformations are applied in real world applications. The primary audience for this work are researchers from different multidisciplinary fields, such as those related with Computer Graphics, Computer Vision, Computer Imaging, Biomedicine, Bioengineering, Mathematics, Physics, Medical Imaging and Medicine.
This book is the first to summarize new technologies for engineered cell manipulation. The contents focus on control of cellular functions by nanomaterials and control of three-dimensional cell-cell interactions. Control of cellular functions is important for cell differentiation, maturation, and activation, which generally are controlled by the addition of soluble cytokines or growth factors into cell culture dishes. Target antigen molecules can be efficiently delivered to the cytosol of the dendritic cells using the nanoparticle technique described here, and cellular functions such as dendritic cell maturation can be controlled easily and with precision. This book describes basic preparation of the nanoparticles, activation control of dendritic cells, immune function control, and in vivo application for various vaccination systems. The second type of control,that of cell-cell interaction, is important for tissue engineering in order to develop three-dimensional cellular constructs. To achieve in vitro engineering of three-dimensional human tissue constructs, cell-cell interaction must be controlled in three dimensions, but typical biological cell manipulation technique cannot accomplish this task. An engineered cell manipulation technique is necessary. In this book the authors describe the fabrication of nanofilms onto cell surfaces, development of three-dimensional cellular multilayers, and various applications of the cellular multilayers as three-dimensional human models. This important work will be highly informative for researchers and students in the fields of materials science, polymer science, biomaterials, medicinal science, nanotechnology, biotechnology, and biology.
Responding to the growing demand for minimally invasive procedures, this book provides a comprehensive overview of the current technological advances in image-guided surgery. It blends the expertise of both engineers and physicians, offering the latest findings and applications. Detailed color images guide readers through the latest techniques, including cranial, orthopedic, prostrate, and endovascular interventions.
This book features a special subsection of Nanomedicine, an application of nanotech nology to achieve breakthroughs in healthcare. It exploits the improved and often novel physical, chemical and biological properties of materials only existent at the nanometer scale. As a consequence of small scale, nanosystems in most cases are efficiently uptaken by cells and appear to act at the intracellular level. Nanotechnology has the potential to improve diagnosis, treatment and follow-up of diseases, and includes targeted drug delivery and regenerative medicine; it creates new tools and methods that impact sig nificantly upon existing conservative practices. This volume is a collection of authoritative reviews. In the introductory section we define the field (intracellular delivery). Then, the fundamental routes of nanode livery devices, cellular uptake, types of delivery devices, particularly in terms of localized cellular delivery, both for small drug molecules, macromolecular drugs and genes; at the academic and applied levels, are covered. The following section is dedicated to enhancing delivery via special targeting motifs followed by the introduction of different types of intracellular nanodelivery devices (e.g. a brief description of their chemistry) and ways of producing these different devices. Finally, we put special emphasis on particular disease states and on other biomedical applications, whilst diagnostic and sensing issues are also included. Intracellular delivery / therapy is a highly topical which will stir great inter est. Intracellular delivery enables much more efficient drug delivery since the impact (on different organelles and sites) is intracellular as the drug is not supplied externally within the blood stream. There is great potential for targeted delivery with improved localized delivery and efficacy.
Proceedings of the Third International Symposium on Frontiers in Biomedical Polymers including Polymer Therapeutics: From Laboratory to Clinical Practice, held May 23-27, 1999, in Shiga, Japan. This book focuses on the progress and unique discoveries in the interdisciplinary scientific and technological area of biomedical application of polymers. The topics include polymeric materials for biomedical and pharmaceutical applications, as well as polymeric materials in therapeutics.
This book covers the principles of advanced 3D fabrication techniques, stem cells and biomaterials for neural engineering. Renowned contributors cover topics such as neural tissue regeneration, peripheral and central nervous system repair, brain-machine interfaces and in vitro nervous system modeling. Within these areas, focus remains on exciting and emerging technologies such as highly developed neuroprostheses and the communication channels between the brain and prostheses, enabling technologies that are beneficial for development of therapeutic interventions, advanced fabrication techniques such as 3D bioprinting, photolithography, microfluidics, and subtractive fabrication, and the engineering of implantable neural grafts.There is a strong focus on stem cells and 3D bioprinting technologies throughout the book, including working with embryonic, fetal, neonatal, and adult stem cells and a variety of sophisticated 3D bioprinting methods for neural engineering applications. There is also a strong focus on biomaterials, including various conductive biomaterials and biomimetic nanomaterials such as carbon-based nanomaterials and engineered 3D nanofibrous scaffolds for neural tissue regeneration. Finally, two chapters on in vitro nervous system models are also included, which cover this topic in the context of studying physiology and pathology of the human nervous system, and for use in drug discovery research. This is an essential book for biomedical engineers, neuroscientists, neurophysiologists, and industry professionals.
Genetic engineering has already produced impressive results in biological research. The gene transfer and cloning methods are changing biotechnology into an innovative activity with potentially great impact on health care, on chemical, pharmaceutical and food industries, on the agricultural and the natural environment. It has thus attracted a great deal of attention from the public and regulatory authorities. There is a need to reconcile technological progress with safety assurance and civic acceptance. Technologies are regulated according to the inherent risk evaluated, through criteria based upon existing scientific evidence, new rigorous information, and/or records of safe applications and good performances. This should also apply to biotechnology. The title Scientific-Technical Backgrounds for Biotechnology Regulation is only intended to indicate that regulatory provisions for biotechnological activities should be in agreement and not in open contradiction with scientific knowledge and established technological experience.
This book investigates the microstructural and mechanical properties of titanium-tantalum (TiTa) alloy formed using selective laser melting (SLM). TiTa has potential orthopaedic biomedical applications thanks to its high strength to modulus ratio. However, because it is difficult to obtain, it is still not widely used. The book describes how SLM is utilized to form this alloy, and provides a better understanding of the SLM process in porous lattice structure fabrication and its control through statistical modelling.
This thesis addresses computation fluid dynamics modelling of aortic dissection (AD), in order to generate in silico diagnostic information and assess 'virtual surgery' outcomes. The thesis introduces several important advances in the modelling of aortic dissection and lays essential groundwork for further development of this technology. The work thesis represents a unique and major step forward in our understanding of AD using a patient-specific, systematic and coherent simulation approach, and is currently the most advanced work available on AD.
Offers an Extensive Discussion on High Frequency Ultrasound Based on a course taught and developed by a foremost expert in diagnostic ultrasound technology, Diagnostic Ultrasound: Imaging and Blood Flow Measurements, Second Edition covers cutting-edge developments, along with the fundamental physics, instrumentation, system architecture, clinical applications, and biological effects of ultrasound. This text addresses the technical side of diagnostic ultrasound and begins with an overview of the field of ultrasonic imaging and its role in diagnostic medicine relative to other imaging modalities. The author describes the fundamental physics involved in ultrasonic transducers, as well as in conventional imaging approaches and Doppler measurements, including contrast imaging and 4D imaging. He reviews the current status and standards on ultrasound bioeffect and discusses methods that have been used to measure ultrasonic properties of tissues. He also provides a list of relevant references and further reading materials at the end of each chapter. New in the Second Edition: Details the latest advances in ultrasound technology related to biomedical applications, including elastrography, portable scanners, ultrasound molecular imaging, preclinical high frequency imaging, 2D array, and 4D imaging techniques Updates and expands each chapter Adds a new chapter on new developments such as elastography and miniature scanners Includes new case studies and examples throughout the book Diagnostic Ultrasound: Imaging and Blood Flow Measurements, Second Edition covers recent advances in ultrasound technology related to biomedical applications. Intended for senior- to graduate-level coursework in ultrasonic imaging, this text also serves practicing physicists, engineers, clinicians, and sonographers.
Respiratory motion causes an important uncertainty in radiotherapy planning of the thorax and upper abdomen. The main objective of radiation therapy is to eradicate or shrink tumor cells without damaging the surrounding tissue by delivering a high radiation dose to the tumor region and a dose as low as possible to healthy organ tissues. Meeting this demand remains a challenge especially in case of lung tumors due to breathing-induced tumor and organ motion where motion amplitudes can measure up to several centimeters. Therefore, modeling of respiratory motion has become increasingly important in radiation therapy. With 4D imaging techniques spatiotemporal image sequences can be acquired to investigate dynamic processes in the patient's body. Furthermore, image registration enables the estimation of the breathing-induced motion and the description of the temporal change in position and shape of the structures of interest by establishing the correspondence between images acquired at different phases of the breathing cycle. In radiation therapy these motion estimations are used to define accurate treatment margins, e.g. to calculate dose distributions and to develop prediction models for gated or robotic radiotherapy. In this book, the increasing role of image registration and motion estimation algorithms for the interpretation of complex 4D medical image sequences is illustrated. Different 4D CT image acquisition techniques and conceptually different motion estimation algorithms are presented. The clinical relevance is demonstrated by means of example applications which are related to the radiation therapy of thoracic and abdominal tumors. The state of the art and perspectives are shown by an insight into the current field of research. The book is addressed to biomedical engineers, medical physicists, researchers and physicians working in the fields of medical image analysis, radiology and radiation therapy.
Up to 40 volumes are planned for this concise monograph series, which focuses on the implementation of various engineering principles in the conception, design, development, analysis and operation of biomedical, biotechnological and nanotechnology systems and applications. In this monograph, the authors discuss the current progress in the medical application of impedimetric biosensors, along with the key challenges in the field. First, a general overview of biosensor development, structure and function is presented, followed by a detailed discussion of impedimetric biosensors and the principles of electrochemical impedance spectroscopy. Next, the current state-of-the art in terms of the science and technology underpinning impedance-based biosensors is reviewed in detail. The layer-by-layer construction of impedimetric sensors is described, including the design of electrodes, their nano-modification, transducer surface functionalisation and the attachment of different bioreceptors. The current challenges of translating lab-based biosensor platforms into commercially-available devices that function with real patient samples at the POC are presented; this includes a consideration of systems integration, microfluidics and biosensor regeneration. The final section of this monograph describes case studies of successful impedance-based biosensors for the detection of a range of analytes from small molecules up to whole microorganisms. Finally, the authors put forward future perspectives for the clinical applications of impedimetric biosensors.
This book reviews fundamental advances in the use of metallic biomaterials to reconstruct hard tissues and blood vessels. It also covers the latest advances in representative metallic biomaterials, such as stainless steels, Co-Cr alloys, titanium and its alloys, zirconium, tantalum and niobium based alloys. In addition, the latest findings on corrosion, cytotoxic and allergic problems caused by metallic biomaterials are introduced. The book offers a valuable reference source for researchers, graduate students and clinicians working in the fields of materials, surgery, dentistry, and mechanics. Mitsuo Niinomi, PhD, D.D.Sc., is a Professor at the Institute for Materials Research, Tohoku University, Japan. Takayuki Narushima, PhD, is a Professor at the Department of Materials Processing, Tohoku University, Japan. Masaaki Nakai, PhD, is an Associate Professor at the Institute for Materials Research, Tohoku University, Japan. |
You may like...
Kaarte - 'n Pretereis Deur Die Lande…
Aleksandra Mizielinska, Daniel Mizielinski
Hardcover
R470
Discovery Miles 4 700
UK in Maps - Explore the Uk - Past…
Stephen Scoffham, Collins Kids
Paperback
|