![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Nursing & ancillary services > Biomedical engineering > General
"Smart Hydrogel Functional Materials" comprehensively and systematically describes our current understanding of smart or intelligent hydrogel functional materials with environmental stimuli-responsive functions. The contents range from hydrogels (including hydrogel-functionalized membranes) to microgels (including hydrogel-functionalized microcapsules) with various response properties, such as thermo-response, pH-response, pH-/thermo-dual-response, glucose-response, ethanol-response, ion-recognition, molecular-recognition, and so on. Most of the contents in this book represent the fresh achievements of the authors' group on smart hydrogel functional materials. While all chapters can be read as stand-alone papers, together they clearly describe the design concepts, fabrication strategies and methods, microstructures and performances of smart hydrogel functional materials. Vivid schematics and illustrations throughout the book enhance the accessibility of the theory and technologies involved. This is an ideal reference book for a broad general readership including chemists, materials researchers, chemical engineers, pharmaceutical scientists and biomedical researchers, who are interested in designing and fabricating smart hydrogel functional materials for various application purposes. Dr. Liang-Yin Chu is a professor at the School of Chemical Engineering, Sichuan University, China. He is a Distinguished Young Scholar of the National Natural Science Foundation of China and a Distinguished Professor of the "Chang Jiang Scholars Program" of the Ministry of Education of China.
This book presents advances in biomedical imaging analysis and processing techniques using time dependent medical image datasets for computer aided diagnosis. The analysis of time-series images is one of the most widely appearing problems in science, engineering, and business. In recent years this problem has gained importance due to the increasing availability of more sensitive sensors in science and engineering and due to the wide-spread use of computers in corporations which have increased the amount of time-series data collected by many magnitudes. An important feature of this book is the exploration of different approaches to handle and identify time dependent biomedical images. Biomedical imaging analysis and processing techniques deal with the interaction between all forms of radiation and biological molecules, cells or tissues, to visualize small particles and opaque objects, and to achieve the recognition of biomedical patterns. These are topics of great importance to biomedical science, biology, and medicine. Biomedical imaging analysis techniques can be applied in many different areas to solve existing problems. The various requirements arising from the process of resolving practical problems motivate and expedite the development of biomedical imaging analysis. This is a major reason for the fast growth of the discipline.
This handbook provides insights into becoming a better and more evolved athlete. It offers aspiring athletes, regardless of skill level, a better understanding of their bodies and how to unlock the unlimited potential of muscles without injury. It focuses on the "superhero" muscle: the iliopsoas, and also sheds light on Diamond-Corporation's new technology and elite athleticism, and how these can contribute to a healthier life. Lastly, the authors explore the mindset of success and provide exercises for remaining calm under pressure. This stand-alone book is the sequel to Paradigm Shift for Future Tennis and Enhancing Performance and Reducing Stress in Sport (2014, Springer). This book is written by scientists, whose expertise collectively spans the fields of biomechanics, clinical surgery, current and former elite athleticism, engineering and naturopath doctoral work. Together, they aim to inspire and educate athletes on how to improve their sports performance by using new technologies, world class biomechanics knowledge and ancient herbal medicines.
This book discusses the design of neural stimulator systems which are used for the treatment of a wide variety of brain disorders such as Parkinson's, depression and tinnitus. Whereas many existing books treating neural stimulation focus on one particular design aspect, such as the electrical design of the stimulator, this book uses a multidisciplinary approach: by combining the fields of neuroscience, electrophysiology and electrical engineering a thorough understanding of the complete neural stimulation chain is created (from the stimulation IC down to the neural cell). This multidisciplinary approach enables readers to gain new insights into stimulator design, while context is provided by presenting innovative design examples.
This volume focuses on latest research in therapeutic devices for cardiovascular, i.e. vascular and valvular and cardiac diseases. In the area of vascular therapies, aspects covered relate to latest research in small-diameter tissue-regenerative vascular grafts, one of the greatest persisting challenges in cardiovascular therapies, stent grafts and endovascular stents for percutaneous arterial interventions. Contributions on valvular therapies focus on tissue engineered and tissue regenerative prosthetic heart valves and valvular prostheses for trans-apical implantation including the challenges posed on the prosthesis design. The section on cardiac diseases aims at covering therapeutic advances for myocardial infarction and prevention of heart failure and on in vivo biomechanics of implantable cardiac pacemaker devices. A further section complements these three areas by presenting constitutive modelling of soft biological tissues of the cardiovascular system, an area imperative for advanced numerical and computational modelling in the development and optimisation of cardiovascular devices and therapies.
This book describes 200 bio-polymers, including the most recent and advanced nanotechnology applications. The applications of various bio-medical and other future potential uses are covered and examined in depth. Systematic discussion of current leading natural polymers is also included.
The NATO Advanced Study Institute "Biomedical Optical Instrumentation and Laser Assisted Biotechnology" was held November 10-22, 1995 in Erice, Sicily. This was the 19 th conference organized by the International School of Quantum Electronics, under the auspices of the "Ettore Majorana" Center for Scientific Culture. The contributions presented at the Institute are written as extended, review-like papers to provide a broad and representative coverage of the fields of laser techniques, optoelectronics systems for medical diagnosis, and light and laser applications to Biology and Medicine. The aim of the Institute was to bring together some of the world's acknowledged scientists and clinicians that belong to different disciplines and consequently do not usually meet, but who have as a common link the use of optoelectronics instrumentation, techniques and procedures. Most of the lecturers attended all the lectures and devoted their spare hours to stimulating discussions. We would like to thank them all for their admirable contributions. The Institute also took advantage of a very active audience; most of the participants were active researchers in the field and contributed with discussions and seminars. Some of these seminars are also included in these Proceedings. The Institute was an important opportunity to discuss latest developments and emerging perspectives on the use of laser sources and optoelectronic techniques for diagnostic and therapeutic purposes."
Nanobiotechnology is the convergence of existing and new biotechnology with the 1 ability to manipulate matter at or near the molecular level. This ability to manipulate matter on a scale of 100 nanometers (nm) or less is what constitutes the nanotechnology revolution occurring today, the potentially vast economic and social implications of which are yet to be fully understood (Royal Society, 2004). The most immediate way to understand the implications of nanobiotechnology for ethics is to consider the real life concerns of communities that are mobilizing within civil society. The conflicts and ethical debates surrounding nanotechnology will, almost by definition, emerge on the fault lines between different civil society actors, researchers and financial interests associated with nanobiotechnology, as well as (potentially) government regulators. These fault lines are all reflected within the concerns (as expressed d- cursively) of the communities mobilizing. This chapter will explore converging d- courses regarding converging technologies. Converging Technologies (CT) are already a familiar theme in the next gene- tion of biotechnology, nanotechnology, pharmacogenomics and proteomics research 2 and development. Nanobiotechnology means that previously separate disciplines (IT, physics, chemistry, and biology) are merging and converging to create new applications and even new life forms through converged technological platforms. Schummer (2004), and Glimell and Fogelberg (2003, p. 43), note the predominance of interdisciplinarity as a core theme of nano-discourse.
Oxides for Medical Applications reviews the most important advances of oxides with optical, magnetic and electronic properties for biomedical applications. Owing to their unusual properties, oxides are expected to play a significant role in the prevention or early treatment of diseases. In addition to catalytically active artificial enzymes based on oxide materials-the book provides comprehensive coverage of the most relevant categories of oxide materials and their properties and applications. Since magnetic oxides are used extensively for a wide range of medical applications, there are numerous chapters that address these materials, including LSMO nanoparticles, ferrites, nanocatalysts, and more. Finally, practical considerations for the translation of these materials from the lab to the clinic are reviewed, including biocompatibility and toxicity of oxide nanoparticles, making this a suitable resource for researchers and practitioners in materials science and engineering in academia and the clinic.
This book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM.
Current Biomedical Databases are independently administered in geographically distinct locations, lending them almost ideally to adoption of intelligent data management approaches. This book focuses on research issues, problems and opportunities in Biomedical Data Infrastructure identifying new issues and directions for future research in Biomedical Data and Information Retrieval, Semantics in Biomedicine, and Biomedical Data Modeling and Analysis. The book will be a useful guide for researchers, practitioners, and graduate-level students interested in learning state-of-the-art development in biomedical data management.
Non-Newtonian properties on bubble dynamics and cavitation are fundamentally different from those of Newtonian fluids. The most significant effect arises from the dramatic increase in viscosity of polymer solutions in an extensional flow, such as that generated about a spherical bubble during its growth or collapse phase. In addition, many biological fluids, such as blood, synovial fluid, and saliva, have non-Newtonian properties and can display significant viscoelastic behaviour. This monograph elucidates general aspects of bubble dynamics and cavitation in non-Newtonian fluids and applies them to the fields of biomedicine and bioengineering. In addition it presents many examples from the process industries. The field is strongly interdisciplinary and the numerous disciplines involve have and will continue to overlook and reinvent each others' work. This book helps researchers to think intuitively about the diverse physics of these systems, to attempt to bridge the various communities involved, and to convey the interest, elegance, and variety of physical phenomena that manifest themselves on the micrometer and microsecond scales.
This book highlights recent research on metaheuristics for biomedical engineering, addressing both theoretical and applications aspects. Given the multidisciplinary nature of bio-medical image analysis, it has now become one of the most central topics in computer science, computer engineering and electrical and electronic engineering, and attracted the interest of many researchers. To deal with these problems, many traditional and recent methods, algorithms and techniques have been proposed. Among them, metaheuristics is the most common choice. This book provides essential content for senior and young researchers interested in methodologies for implementing metaheuristics to help solve biomedical engineering problems.
The book Handheld Total Chemical and Biological Analysis Systems: Bridging NMR, Digital Microfluidics, and Semiconductors centers on the complete design of Nuclear Magnetic Resonance (NMR) microsystems for in vitro chemical and biological assays based on semiconductor chips and portable magnet. Different sensing mechanisms for CMOS in vitro assay are compared, key design criteria of the CMOS transceiver for NMR measurement are revealed, and system-level optimizations of the CMOS NMR platform utilizing digital microfluidic and diverse functions of the CMOS technology are discussed. Two CMOS NMR platforms are implemented, each of these focuses on different aspect of optimization.
This, the seventh volume in the New Clinical Applications Series, has an international flavour, with contributions from Australia (Mr N.e. Davis), Great Britain (Drs A.W. Macfarlane, N.C. Smith, M.F. Spittle, J.L.Verbov), and USA (Dr M.e. Finan and Professor R.K. Winkelmann). Dr Smith discusses some common skin tumours with his character istic informative clarity. It is appropriate that an authority such as Mr Davis should discuss a tumour that has a particularly high inci dence in his own country. Dr Spittle is a recognized authority on lymphomas and she writes succinctly on their management. Dr Finan and Professor Winkelmann have extensive experience of the rare condition, necrobiotic xanthogranuloma, and Drs Macfarlane and Verbov have been involved in the management of many patients with scleromyxoedema. I am very pleased to have had the opportunity of working with the contributors and thank them most sincerely for their efforts. I hope that this volume will interest dermatologists, oncologists, pathologists, radiotherapists and surgeons. JULIAN VERBOV ix ABOUT THE EDITOR Dr Julian Verbov is Consultant Dermatologist to Liverpool Health Authority and Clinical Lecturer in Dermatology at the University of Liverpool. He is a member of the British Association of Dermatologists, rep resenting the British Society for Paediatric Dermatology on its Executive Committee. He is a Committee Member of the North of England Dermatological Society, and Editor of its Proceedings."
Temporal Information Systems in Medicine introduces the engineering of information systems for medically-related problems and applications. The chapters are organized into four parts; fundamentals, temporal reasoning & maintenance in medicine, time in clinical tasks, and the display of time-oriented clinical information. The chapters are self-contained with pointers to other relevant chapters or sections in this book when necessary. Time is of central importance and is a key component of the engineering process for information systems. This book is designed as a secondary text or reference book for upper -undergraduate level students and graduate level students concentrating on computer science, biomedicine and engineering. Industry professionals and researchers working in health care management, information systems in medicine, medical informatics, database management and AI will also find this book a valuable asset.
Microfluidics and Microfabrication discusses the interconnect between microfluidics, microfabrication and the life sciences. Specifically, this includes fundamental aspects of fluid mechanics in micro-scale and nano-scale confinements and microfabrication. Material is also presented discussing micro-textured engineered surfaces, high-performance AFM probe-based, micro-grooving processes, fabrication with metals and polymers in bio-micromanipulation and microfluidic applications. Editor Suman Chakraborty brings together leading minds in both fields who also:
Microfluidics and Microfabrication is an ideal book for researchers, engineers and senior-level graduate students interested in learning more about the two fields.
This volume describes new frontiers in medical and service robotics in the light of recent developments in technology to advance robot design and implementation. In particular, the work looks at advances in design, development and implementation of contemporary surgical, rehabilitation and biorobots. Surgical robots allow surgeons greater access to areas under operation using more precise and less invasive methods. Rehabilitation robots facilitate and support the lives of the infirm, elderly people, or those with dysfunction of body parts affecting movement. These robots are also used for rehabilitation and related procedures, such as training and therapy. Biorobots are designed to imitate the cognition of humans and animals. The need to substitute humans working on delicate, tiresome and monotonous tasks, or working with potentially health-damaging toxic materials, requires intelligent, high-performance service robots with the ability to cooperate, advanced communication and sophisticated perception and cognitive capabilities. Progress in this field is fast and results need to be disseminated to stimulate both practical applications and further research. Thus, these papers are a valuable addition to existing literature.
The human hand and its dexterity in grasping and manipulating objects are some of the hallmarks of the human species. For years, anatomic and biomechanical studies have deepened the understanding of the human hand's functioning and, in parallel, the robotics community has been working on the design of robotic hands capable of manipulating objects with a performance similar to that of the human hand. However, although many researchers have partially studied various aspects, to date there has been no comprehensive characterization of the human hand's function for grasping and manipulation of everyday life objects. This monograph explores the hypothesis that the confluence of both scientific fields, the biomechanical study of the human hand and the analysis of robotic manipulation of objects, would greatly benefit and advance both disciplines through simulation. Therefore, in this book, the current knowledge of robotics and biomechanics guides the design and implementation of a simulation framework focused on manipulation interactions that allows the study of the grasp through simulation. As a result, a valuable framework for the study of the grasp, with relevant applications in several fields such as robotics, biomechanics, ergonomics, rehabilitation and medicine, has been made available to these communities.
The study of electromagnetic bioeffects is multidisciplinary; it draws heavily from the disciplines of physics, engineering, mathematics, biol ogy, chemistry, medicine, and environmental health. This book is about these disciplines and how they mutually integrate in the study of electromagnetic pathophysiology. Over aperiod of years, the authors have become increasingly aware of the difficulty in locating information concerning interaction of electro magnetic energy and biological tissues. There are numerous reports and publications, but no single comprehensive source in the American literature where such information is readily accessible. Regrettably, much of the importantinformation is contained in government documents and reports, some of which are inaccessible, or spread through many diverse journals, making retrieval and analysis of the material difficult. Although this book is primarily clinically oriented, it also focuses on those biophysical, biochemical, and fundamental molecular studies and findings that provide the basis for understanding the presence or absence of pathophysiological manifestations of exposure to radiofrequency, including microwave, energies. Detailed discussion and analysis of the relevant comprehensive physics, engineering, and biophysics are con tained in Chapters 2-5. Because the treatment is multidisciplinary, wherever possible analy sis is begun with basic background information that may appear elementary to some readers but is essential to understanding for those from a different discipline. Most confusion and controversies that exist in the field today arise from individuals of one discipline not appreciating basic facts or theories from another."
Bone and Cartilage Engineering provides a complete overview of recent knowledge in bone and cartilage tissue engineering. It follows a logical approach to the various aspects of extracorporal bone and cartilage tissue engineering. The cooperation between a basic scientist and a clinician made it possible to structure the book's content and style according to the interdisciplinary character of the field. The comprehensive nature of the book, including detailed descriptions of laboratory procedures, preclinical approaches, clinical applications, and regulatory issues, will make it an invaluable basis for everyone working in this field. This book will serve as a fundamental tool for basic researchers to establish or refine tissue engineering techniques as well as for clinicians to understand and use this modern therapeutic option.
The present book relates to the scientific records of a workshop held in Patras, Greece, in June 1989, under the auspices and with financial support of the European Economic Communities (Concerted Action EUROBIOMAT - Hemocompatibility - of the Medical Research Programme, Project: 11.1.212). This concerted action promotes the collaboration on science and technology on the particular field of hemocompatible biomaterials: exchange of experts, scholarships and scientific workshops within the EC-member countries and COST countries such as Sweden, Finland, Turkey, Switzerland. The first part of this monography refers to the oral presentations of the par ticipants. The second part gives the book its unique character: the scientific discussion on updated aspects of protein adsorption of synthetic polymers in contact with blood. This second part is subdivided into nine chapters where specific topics were discussed freely, open-minded and even controversially. This book intends to elucidate recurrent questions concerning the initial event when blood contacts artificial surfaces. Young investigators will consider this book to be appropriate to get familiar with the scientific background and the most relevant techniques and methods."
Digital Twins for Healthcare: Design, Challenges and Solutions establishes the state-of-art in the specification, design, creation, deployment and exploitation of digital twins' technologies for healthcare and wellbeing. A digital twin is a digital replication of a living or non-living physical entity. When data is transmitted seamlessly, it bridges the physical and virtual worlds, thus allowing the virtual entity to exist simultaneously with the physical entity. A digital twin facilitates the means to understand, monitor, and optimize the functions of the physical entity and provide continuous feedback. It can be used to improve citizens' quality of life and wellbeing in smart cities and the virtualization of industrial processes.
This book details current developments in all natural polymers, with a focus on animal and microbial polysaccharides. The book examines, compares, and contrasts the efficiency of plant and algae based natural polymers in inducing immune reactions. Additionally, the book details the safety and toxicity profiles with respective regulations. |
You may like...
Advanced Multiresponse Process…
Tatjana V. Sibalija, Vidosav D. Majstorovic
Hardcover
Computational Intelligence, Optimization…
Gustavo Mendes Platt, Xin-She Yang, …
Hardcover
R2,687
Discovery Miles 26 870
Managing AI Wisely - From Development to…
Lauren Waardenburg, Marleen Huysman, …
Hardcover
R2,682
Discovery Miles 26 820
Artificial Intelligence and Machine…
Vedik Basetti, Chandan Kumar Shiva, …
Paperback
R2,479
Discovery Miles 24 790
|